[洪流学堂]Hololens开发高级篇5:空间映射(Spatial mapping)

来源:互联网 发布:找软件 编辑:程序博客网 时间:2024/05/22 06:19

本教程基于Unity2017.2及Visual Studio 2017
本教程编写时间:2017年12月16日

本文内容提要

空间映射让holograms了解周围环境,将真实世界和虚拟世界更好地结合在一起。本教程你将会学到:
- 扫描环境并将数据传输到你的开发设备
- 探索shader并用shader来展示你的空间
- 使用网格处理将房间网格划分为简单的平面
- 我们将研究比入门篇中更高级的放置技术,当一个hologram可以放置在环境中时提供反馈
- 学习遮挡效果,当你的hologram被真实世界物体挡住时,你仍然可以通过X光透视看到它!

准备工作

  • 安装好Hololens模拟器开发环境
  • 已完成Hololens入门篇的学习

资源下载

请先下载官方教程的资源
原地址
如果下载有困难,百度云地址

0 创建工程

  1. 将下载资源的解压出来
  2. 打开Unitiy,创建新工程,命名为 Planetarium, 选择 3D,点击Create Project
  3. Edit > Project Settings > Player,在Inspector面板中,点击Windows Store图标
  4. 展开XR Settings,勾选Virtual Reality Supported复选框,确认Windows Mixed Reality在下面的列表中
  5. 展开Publishing Settings,在Capabilities中选中
    • InternetClientServer
    • PrivateNetworkClientServer
    • Microphone
    • SpatialPerception
  6. 在Other Settings里面,找到Scripting Backend设置为.NET
  7. Assets > Import Package > Custom Package,导入刚解压出来的HolographicAcademy-Holograms-230-SpatialMapping\Starting\Planetarium.unitypackage
  8. 在Hierarchy中,删除Main Camera
  9. 将Project面板中,HoloToolkit-SpatialMapping-230\Utilities\Prefabs 文件夹下的 Main Camera 拖到Hierarchy空白处
  10. 删除Hierarchy中的Directional Light物体
  11. 将Project面板中,Holograms文件夹下的Cursor拖到Hierarchy中
  12. 在Hierarchy面板选中 Cursor 物体,在Inspector面板的上部Layer下拉菜单中选择 Edit Layers,将 User Layer 31 命名为 “SpatialMapping”
  13. 保存场景到 Scenes\Planetarium.unity

1 扫描

目标

  • 学习SurfaceObserver及其设置如何影响体验和性能。
  • 创建一个房间扫描来收集你的房间网格。

步骤

  • Project面板下 HoloToolkit-SpatialMapping-230\SpatialMapping\Prefabs 文件夹中找到 SpatialMapping prefab
  • 将 SpatialMapping prefab拖到 Hierarchy 的空白处

编译部署(第一部分)

  • File > Build Settings, 点击 Add Open Scenes 将当前场景添加到build
  • 选择Universal Windows Platform,点击Switch Platform按钮
    1. Target device设置为Hololens,选中Unity C# Projects
    2. 在Build Settings面板,点击Build,新建App文件夹并选择该文件夹
    3. Build完成后,打开App文件夹下的解决方案,将Debug改为Release,ARM改为x86,并选中Hololens Emulator
    4. 点击调试 > 开始执行(不调试)或者Ctrl+F5(注意:模拟器启动慢可能会引起部署超时,这时候不要关闭模拟器,直接再次Ctrl+F5即可)

编译部署第二部分

现在我们来看下空间映射如何影响性能。
- 在Unity中,选择 Window> Profiler。
- 点击 Add Profiler > GPU。
- 点击 Active Profiler >
- 输入您的HoloLens 的IP地址,模拟器的地址看下图图示获得

- 点击 Connect
- 观察GPU渲染每帧所花费的毫秒数。
- 返回到Visual Studio并打开SpatialMappingObserver.cs。可以在 Assembly-CSharp (Universal Windows) 项目的 HoloToolkit-SpatialMapping-230\SpatialMapping\Scripts 文件夹中找到它。
- 找到 Awake() 函数,并添加以下代码:TrianglesPerCubicMeter = 1200;

- 将项目重新部署到您的设备,然后重新连接分析器。观察渲染每帧的毫秒数的变化。(每帧耗时应该有所升高)

保存房间模型并在Unity中加载

最后,保存房间网格并将其加载到Unity中。
- 返回到Visual Studio 删除上一节中在Awake()函数中添加的TrianglesPerCubicMeter代码。
- 将项目重新部署。现在我们应该每立方米显示500个三角形。
- 打开浏览器并输入HoloLens IP地址进入 Windows Device Protal。模拟器可以直接点击右侧工具栏中的Device Protal按钮(从下往上第二个)进入。
- 在左侧面板中选择3D View。
- 在 Spatial mapping 下,点击 Update 按钮。
- 可以看到 HoloLens 扫描过的区域显示在窗口中。
- 要保存房间扫描数据,点击Save按钮,浏览器会下载模型文件。
- 打开你的下载文件夹找到保存的房间模型 SpatialMapping.obj。
- 将 SpatialMapping.obj 复制到Unity项目的Assets文件夹中。
- 在Unity中,在 Hierarchy 面板中选择 SpatialMapping 物体的 Object Surface Observer (Script) 组件
- 将 Room Model 属性设置为刚加入工程的 SpatialMapping.obj
- 在Unity中运行下, SpatialMapping组件应该会加载网格模型
- 切换到场景视图可以查看线框显示的整个房间模型。

注意:下一次在Unity中进入Play模式时,默认会加载这个房间网格。

2 可视化

目标

  • 学习shader基础
  • 将周围环境可视化

步骤

  • 在Hierarchy米娜版那种,选额 SpatialMapping物体上面的 Spatial Mapping Manager (Script) 组件
  • 将 Surface Material 属性搜索设置为 BlueLinesOnWalls 材质
  • BlueLinesOnWalls 是一个简单的像素着色器,实现以下功能:
    • 将顶点的位置转换为世界坐标
    • 通过顶点的发现判断像素是否垂直
    • 设置像素的颜色

编译部署

  • 在Unity中进入Play模式,蓝线将在房间网格的所有垂直表面上显示(从我们保存的扫描数据中自动加载)
  • 切到 Scene 面板,查看整个房间网格是如何显示的
  • 调整 BlueLinesOnWalls 的一些属性,看看显示效果如何变化:
    • 调整LineScale值以使线条显得更粗或更薄
    • 调整LinesPerMeter值以更改每个墙上显示的线条数
  • 部署到Hololens模拟器看看

Unity预览材质非常方便,但是开发时一定要到真机上看下效果

处理

目标

  • 学习处理空间映射数据以便在应用程序中使用
  • 分析空间映射数据以找到平面并去除三角形。
  • 使用平面进行hologram放置

步骤

  • 将 Holograms 文件夹下的 SpatialProcessing prefab拖到场景中
    SpatialProcessing prefab包含处理空间映射数据的组件。SurfaceMeshesToPlanes.cs根据空间映射数据找到并生成平面。我们将在我们的应用中使用平面来代表墙壁,地板和天花板。这个prefab还包括RemoveSurfaceVertices.cs,它可以从空间映射网格中删除顶点。这可以用来在网格中创建孔,或去除不再需要的多余三角形(因为可以使用平面代替)。
  • 将 Holograms 文件夹下的 SpaceCollection prefab拖到场景中
  • 打开 SpatialProcessing 上的 PlaySpaceManager 脚本
    PlaySpaceManager.cs包含针对本程序的代码。我们需要在脚本中添加以下功能:
    1. 超过扫描时间限制(10秒)后停止采集空间映射数据。
    2. 处理空间映射数据:
      • 使用SurfaceMeshesToPlanes将墙壁,地板,天花板等用平面表示。
      • 使用RemoveSurfaceVertices去除落在平面内的三角形。
    3. 在场景中生成hologram的集合,并将它们放置在靠近用户的墙壁和地板上。
  • 根据 PlaySpaceManager.cs 中注释标记补全代码,最终完整代码如下
using System.Collections.Generic;using UnityEngine;using UnityEngine.Windows.Speech;using Academy.HoloToolkit.Unity;/// <summary>/// The SurfaceManager class allows applications to scan the environment for a specified amount of time /// and then process the Spatial Mapping Mesh (find planes, remove vertices) after that time has expired./// </summary>public class PlaySpaceManager : Singleton<PlaySpaceManager>{    [Tooltip("When checked, the SurfaceObserver will stop running after a specified amount of time.")]    public bool limitScanningByTime = true;    [Tooltip("How much time (in seconds) that the SurfaceObserver will run after being started; used when 'Limit Scanning By Time' is checked.")]    public float scanTime = 30.0f;    [Tooltip("Material to use when rendering Spatial Mapping meshes while the observer is running.")]    public Material defaultMaterial;    [Tooltip("Optional Material to use when rendering Spatial Mapping meshes after the observer has been stopped.")]    public Material secondaryMaterial;    [Tooltip("Minimum number of floor planes required in order to exit scanning/processing mode.")]    public uint minimumFloors = 1;    [Tooltip("Minimum number of wall planes required in order to exit scanning/processing mode.")]    public uint minimumWalls = 1;    /// <summary>    /// Indicates if processing of the surface meshes is complete.    /// </summary>    private bool meshesProcessed = false;    /// <summary>    /// GameObject initialization.    /// </summary>    private void Start()    {        // Update surfaceObserver and storedMeshes to use the same material during scanning.        SpatialMappingManager.Instance.SetSurfaceMaterial(defaultMaterial);        // Register for the MakePlanesComplete event.        SurfaceMeshesToPlanes.Instance.MakePlanesComplete += SurfaceMeshesToPlanes_MakePlanesComplete;    }    /// <summary>    /// Called once per frame.    /// </summary>    private void Update()    {        // Check to see if the spatial mapping data has been processed        // and if we are limiting how much time the user can spend scanning.        if (!meshesProcessed && limitScanningByTime)        {            // If we have not processed the spatial mapping data            // and scanning time is limited...            // Check to see if enough scanning time has passed            // since starting the observer.            if (limitScanningByTime && ((Time.time - SpatialMappingManager.Instance.StartTime) < scanTime))            {                // If we have a limited scanning time, then we should wait until                // enough time has passed before processing the mesh.            }            else            {                // The user should be done scanning their environment,                // so start processing the spatial mapping data...                /* TODO: 3.a DEVELOPER CODING EXERCISE 3.a */                // 3.a: Check if IsObserverRunning() is true on the                // SpatialMappingManager.Instance.                if(SpatialMappingManager.Instance.IsObserverRunning())                {                    // 3.a: If running, Stop the observer by calling                    // StopObserver() on the SpatialMappingManager.Instance.                    SpatialMappingManager.Instance.StopObserver();                }                // 3.a: Call CreatePlanes() to generate planes.                CreatePlanes();                // 3.a: Set meshesProcessed to true.                meshesProcessed = true;            }        }    }    /// <summary>    /// Handler for the SurfaceMeshesToPlanes MakePlanesComplete event.    /// </summary>    /// <param name="source">Source of the event.</param>    /// <param name="args">Args for the event.</param>    private void SurfaceMeshesToPlanes_MakePlanesComplete(object source, System.EventArgs args)    {        /* TODO: 3.a DEVELOPER CODING EXERCISE 3.a */        // Collection of floor and table planes that we can use to set horizontal items on.        List<GameObject> horizontal = new List<GameObject>();        // Collection of wall planes that we can use to set vertical items on.        List<GameObject> vertical = new List<GameObject>();        // 3.a: Get all floor and table planes by calling        // SurfaceMeshesToPlanes.Instance.GetActivePlanes().        // Assign the result to the 'horizontal' list.        horizontal = SurfaceMeshesToPlanes.Instance.GetActivePlanes(PlaneTypes.Table | PlaneTypes.Floor);        // 3.a: Get all wall planes by calling        // SurfaceMeshesToPlanes.Instance.GetActivePlanes().        // Assign the result to the 'vertical' list.        vertical = SurfaceMeshesToPlanes.Instance.GetActivePlanes(PlaneTypes.Wall);        // Check to see if we have enough horizontal planes (minimumFloors)        // and vertical planes (minimumWalls), to set holograms on in the world.        if (horizontal.Count >= minimumFloors && vertical.Count >= minimumWalls)        {            // We have enough floors and walls to place our holograms on...            // 3.a: Let's reduce our triangle count by removing triangles            // from SpatialMapping meshes that intersect with our active planes.            // Call RemoveVertices().            // Pass in all activePlanes found by SurfaceMeshesToPlanes.Instance.            RemoveVertices(SurfaceMeshesToPlanes.Instance.ActivePlanes);            // 3.a: We can indicate to the user that scanning is over by            // changing the material applied to the Spatial Mapping meshes.            // Call SpatialMappingManager.Instance.SetSurfaceMaterial().            // Pass in the secondaryMaterial.            SpatialMappingManager.Instance.SetSurfaceMaterial(secondaryMaterial);            // 3.a: We are all done processing the mesh, so we can now            // initialize a collection of Placeable holograms in the world            // and use horizontal/vertical planes to set their starting positions.            // Call SpaceCollectionManager.Instance.GenerateItemsInWorld().            // Pass in the lists of horizontal and vertical planes that we found earlier.            SpaceCollectionManager.Instance.GenerateItemsInWorld(horizontal, vertical);        }        else        {            // We do not have enough floors/walls to place our holograms on...            // 3.a: Re-enter scanning mode so the user can find more surfaces by             // calling StartObserver() on the SpatialMappingManager.Instance.            SpatialMappingManager.Instance.StartObserver();            // 3.a: Re-process spatial data after scanning completes by            // re-setting meshesProcessed to false.            meshesProcessed = false;        }    }    /// <summary>    /// Creates planes from the spatial mapping surfaces.    /// </summary>    private void CreatePlanes()    {        // Generate planes based on the spatial map.        SurfaceMeshesToPlanes surfaceToPlanes = SurfaceMeshesToPlanes.Instance;        if (surfaceToPlanes != null && surfaceToPlanes.enabled)        {            surfaceToPlanes.MakePlanes();        }    }    /// <summary>    /// Removes triangles from the spatial mapping surfaces.    /// </summary>    /// <param name="boundingObjects"></param>    private void RemoveVertices(IEnumerable<GameObject> boundingObjects)    {        RemoveSurfaceVertices removeVerts = RemoveSurfaceVertices.Instance;        if (removeVerts != null && removeVerts.enabled)        {            removeVerts.RemoveSurfaceVerticesWithinBounds(boundingObjects);        }    }    /// <summary>    /// Called when the GameObject is unloaded.    /// </summary>    private void OnDestroy()    {        if (SurfaceMeshesToPlanes.Instance != null)        {            SurfaceMeshesToPlanes.Instance.MakePlanesComplete -= SurfaceMeshesToPlanes_MakePlanesComplete;        }    }}

编译部署

  • 在部署到HoloLens之前,在 Unity 中运行预览一下
  • 加载房间网格数据后,等待10秒钟处理数据。
  • 处理完成后,地板,墙壁,天花板等将显示为平面。
  • 所有的平面处理完成后,你应该看到太阳能系出现在靠近相机的地板上。
  • 照相机附近的墙壁上也应该出现两张海报。如果在Game下看不到它们,请切换到 Scene 面板。
  • 再次按下Play按钮退出Play模式。
  • 部署到HoloLens。
  • 等待空间映射数据的扫描和处理完成。
  • 看到平面以后,试着找到世界中的太阳系和海报。

4 放置

目标

  • 确定 hologram 是否放到了表面
  • hologram能否放到表面,给用户提供反馈

步骤

  • 选中 SpatialProcessing 物体,将 Surface Meshes To Planes (Script) 组件的 Draw Planes 属性设置为 Wall(可以先选Nothing清空所有)
  • 打开Scripts文件夹下的Placeable脚本
    Placeable脚本已经添加到找到平面后自动生成的海报和投影仪上。现在我们需要去掉一些代码的注释,这个脚本就能实现以下功能:

    1. 通过射线检测判断一个hologram是否适合一个表面
    2. 通过表面的发现来判断表面是否平滑,能让hologram放平
    3. hologram放置的时候渲染一个边界立方体来显示hologram的真实大小
    4. 在hologram将被放到的地面或墙上投射阴影
    5. 如果hologram可以放置,阴影显示为绿色,否则显示为红色
    6. 根据表面的类型(水平或垂直)重新旋转hologram
    7. 将hologram平滑地放置在选定的表面上,避免跳跃或捕捉情况。
  • 根据提示删掉代码的注释,最终代码如下:

using System.Collections.Generic;using UnityEngine;using Academy.HoloToolkit.Unity;/// <summary>/// Enumeration containing the surfaces on which a GameObject/// can be placed.  For simplicity of this sample, only one/// surface type is allowed to be selected./// </summary>public enum PlacementSurfaces{    // Horizontal surface with an upward pointing normal.        Horizontal = 1,    // Vertical surface with a normal facing the user.    Vertical = 2,}/// <summary>/// The Placeable class implements the logic used to determine if a GameObject/// can be placed on a target surface. Constraints for placement include:/// * No part of the GameObject's box collider impacts with another object in the scene/// * The object lays flat (within specified tolerances) against the surface/// * The object would not fall off of the surface if gravity were enabled./// This class also provides the following visualizations./// * A transparent cube representing the object's box collider./// * Shadow on the target surface indicating whether or not placement is valid./// </summary>public class Placeable : MonoBehaviour{    [Tooltip("The base material used to render the bounds asset when placement is allowed.")]    public Material PlaceableBoundsMaterial = null;    [Tooltip("The base material used to render the bounds asset when placement is not allowed.")]    public Material NotPlaceableBoundsMaterial = null;    [Tooltip("The material used to render the placement shadow when placement it allowed.")]    public Material PlaceableShadowMaterial = null;    [Tooltip("The material used to render the placement shadow when placement it not allowed.")]    public Material NotPlaceableShadowMaterial = null;    [Tooltip("The type of surface on which the object can be placed.")]    public PlacementSurfaces PlacementSurface = PlacementSurfaces.Horizontal;    [Tooltip("The child object(s) to hide during placement.")]    public List<GameObject> ChildrenToHide = new List<GameObject>();    /// <summary>    /// Indicates if the object is in the process of being placed.    /// </summary>    public bool IsPlacing { get; private set; }    // The most recent distance to the surface.  This is used to     // locate the object when the user's gaze does not intersect    // with the Spatial Mapping mesh.    private float lastDistance = 2.0f;    // The distance away from the target surface that the object should hover prior while being placed.    private float hoverDistance = 0.15f;    // Threshold (the closer to 0, the stricter the standard) used to determine if a surface is flat.    private float distanceThreshold = 0.02f;    // Threshold (the closer to 1, the stricter the standard) used to determine if a surface is vertical.    private float upNormalThreshold = 0.9f;    // Maximum distance, from the object, that placement is allowed.    // This is used when raycasting to see if the object is near a placeable surface.    private float maximumPlacementDistance = 5.0f;    // Speed (1.0 being fastest) at which the object settles to the surface upon placement.    private float placementVelocity = 0.06f;    // Indicates whether or not this script manages the object's box collider.    private bool managingBoxCollider = false;    // The box collider used to determine of the object will fit in the desired location.    // It is also used to size the bounding cube.    private BoxCollider boxCollider = null;    // Visible asset used to show the dimensions of the object. This asset is sized    // using the box collider's bounds.    private GameObject boundsAsset = null;    // Visible asset used to show the where the object is attempting to be placed.    // This asset is sized using the box collider's bounds.    private GameObject shadowAsset = null;    // The location at which the object will be placed.    private Vector3 targetPosition;    /// <summary>    /// Called when the GameObject is created.    /// </summary>    private void Awake()    {        targetPosition = gameObject.transform.position;        // Get the object's collider.        boxCollider = gameObject.GetComponent<BoxCollider>();        if (boxCollider == null)        {            // The object does not have a collider, create one and remember that            // we are managing it.            managingBoxCollider = true;            boxCollider = gameObject.AddComponent<BoxCollider>();            boxCollider.enabled = false;        }        // Create the object that will be used to indicate the bounds of the GameObject.        boundsAsset = GameObject.CreatePrimitive(PrimitiveType.Cube);        boundsAsset.transform.parent = gameObject.transform;        boundsAsset.SetActive(false);        // Create a object that will be used as a shadow.        shadowAsset = GameObject.CreatePrimitive(PrimitiveType.Quad);        shadowAsset.transform.parent = gameObject.transform;        shadowAsset.SetActive(false);    }    /// <summary>    /// Called when our object is selected.  Generally called by    /// a gesture management component.    /// </summary>    public void OnSelect()    {        /* TODO: 4.a CODE ALONG 4.a */        if (!IsPlacing)        {            OnPlacementStart();        }        else        {            OnPlacementStop();        }    }    /// <summary>    /// Called once per frame.    /// </summary>    private void Update()    {        /* TODO: 4.a CODE ALONG 4.a */        if (IsPlacing)        {            // Move the object.            Move();            // Set the visual elements.            Vector3 targetPosition;            Vector3 surfaceNormal;            bool canBePlaced = ValidatePlacement(out targetPosition, out surfaceNormal);            DisplayBounds(canBePlaced);            DisplayShadow(targetPosition, surfaceNormal, canBePlaced);        }        else        {            // Disable the visual elements.            boundsAsset.SetActive(false);            shadowAsset.SetActive(false);            // Gracefully place the object on the target surface.            float dist = (gameObject.transform.position - targetPosition).magnitude;            if (dist > 0)            {                gameObject.transform.position = Vector3.Lerp(gameObject.transform.position, targetPosition, placementVelocity / dist);            }            else            {                // Unhide the child object(s) to make placement easier.                for (int i = 0; i < ChildrenToHide.Count; i++)                {                    ChildrenToHide[i].SetActive(true);                }            }        }    }    /// <summary>    /// Verify whether or not the object can be placed.    /// </summary>    /// <param name="position">    /// The target position on the surface.    /// </param>    /// <param name="surfaceNormal">    /// The normal of the surface on which the object is to be placed.    /// </param>    /// <returns>    /// True if the target position is valid for placing the object, otherwise false.    /// </returns>    private bool ValidatePlacement(out Vector3 position, out Vector3 surfaceNormal)    {        Vector3 raycastDirection = gameObject.transform.forward;        if (PlacementSurface == PlacementSurfaces.Horizontal)        {            // Placing on horizontal surfaces.            // Raycast from the bottom face of the box collider.            raycastDirection = -(Vector3.up);        }        // Initialize out parameters.        position = Vector3.zero;        surfaceNormal = Vector3.zero;        Vector3[] facePoints = GetColliderFacePoints();        // The origin points we receive are in local space and we         // need to raycast in world space.        for (int i = 0; i < facePoints.Length; i++)        {            facePoints[i] = gameObject.transform.TransformVector(facePoints[i]) + gameObject.transform.position;        }        // Cast a ray from the center of the box collider face to the surface.        RaycastHit centerHit;        if (!Physics.Raycast(facePoints[0],                        raycastDirection,                        out centerHit,                        maximumPlacementDistance,                        SpatialMappingManager.Instance.LayerMask))        {            // If the ray failed to hit the surface, we are done.            return false;        }        // We have found a surface.  Set position and surfaceNormal.        position = centerHit.point;        surfaceNormal = centerHit.normal;        // Cast a ray from the corners of the box collider face to the surface.        for (int i = 1; i < facePoints.Length; i++)        {            RaycastHit hitInfo;            if (Physics.Raycast(facePoints[i],                                raycastDirection,                                out hitInfo,                                maximumPlacementDistance,                                SpatialMappingManager.Instance.LayerMask))            {                // To be a valid placement location, each of the corners must have a similar                // enough distance to the surface as the center point                if (!IsEquivalentDistance(centerHit.distance, hitInfo.distance))                {                    return false;                }            }            else            {                // The raycast failed to intersect with the target layer.                return false;            }        }        return true;    }    /// <summary>    /// Determine the coordinates, in local space, of the box collider face that     /// will be placed against the target surface.    /// </summary>    /// <returns>    /// Vector3 array with the center point of the face at index 0.    /// </returns>    private Vector3[] GetColliderFacePoints()    {        // Get the collider extents.          // The size values are twice the extents.        Vector3 extents = boxCollider.size / 2;        // Calculate the min and max values for each coordinate.        float minX = boxCollider.center.x - extents.x;        float maxX = boxCollider.center.x + extents.x;        float minY = boxCollider.center.y - extents.y;        float maxY = boxCollider.center.y + extents.y;        float minZ = boxCollider.center.z - extents.z;        float maxZ = boxCollider.center.z + extents.z;        Vector3 center;        Vector3 corner0;        Vector3 corner1;        Vector3 corner2;        Vector3 corner3;        if (PlacementSurface == PlacementSurfaces.Horizontal)        {            // Placing on horizontal surfaces.            center = new Vector3(boxCollider.center.x, minY, boxCollider.center.z);            corner0 = new Vector3(minX, minY, minZ);            corner1 = new Vector3(minX, minY, maxZ);            corner2 = new Vector3(maxX, minY, minZ);            corner3 = new Vector3(maxX, minY, maxZ);        }        else        {            // Placing on vertical surfaces.            center = new Vector3(boxCollider.center.x, boxCollider.center.y, maxZ);            corner0 = new Vector3(minX, minY, maxZ);            corner1 = new Vector3(minX, maxY, maxZ);            corner2 = new Vector3(maxX, minY, maxZ);            corner3 = new Vector3(maxX, maxY, maxZ);        }        return new Vector3[] { center, corner0, corner1, corner2, corner3 };    }    /// <summary>    /// Put the object into placement mode.    /// </summary>    public void OnPlacementStart()    {        // If we are managing the collider, enable it.         if (managingBoxCollider)        {            boxCollider.enabled = true;        }        // Hide the child object(s) to make placement easier.        for (int i = 0; i < ChildrenToHide.Count; i++)        {            ChildrenToHide[i].SetActive(false);        }        // Tell the gesture manager that it is to assume        // all input is to be given to this object.        GestureManager.Instance.OverrideFocusedObject = gameObject;        // Enter placement mode.        IsPlacing = true;    }    /// <summary>    /// Take the object out of placement mode.    /// </summary>    /// <remarks>    /// This method will leave the object in placement mode if called while    /// the object is in an invalid location.  To determine whether or not    /// the object has been placed, check the value of the IsPlacing property.    /// </remarks>    public void OnPlacementStop()    {        // ValidatePlacement requires a normal as an out parameter.        Vector3 position;        Vector3 surfaceNormal;        // Check to see if we can exit placement mode.        if (!ValidatePlacement(out position, out surfaceNormal))        {            return;        }        // The object is allowed to be placed.        // We are placing at a small buffer away from the surface.        targetPosition = position + (0.01f * surfaceNormal);        OrientObject(true, surfaceNormal);        // If we are managing the collider, disable it.         if (managingBoxCollider)        {            boxCollider.enabled = false;        }        // Tell the gesture manager that it is to resume        // its normal behavior.        GestureManager.Instance.OverrideFocusedObject = null;        // Exit placement mode.        IsPlacing = false;    }    /// <summary>    /// Positions the object along the surface toward which the user is gazing.    /// </summary>    /// <remarks>    /// If the user's gaze does not intersect with a surface, the object    /// will remain at the most recently calculated distance.    /// </remarks>    private void Move()    {        Vector3 moveTo = gameObject.transform.position;        Vector3 surfaceNormal = Vector3.zero;        RaycastHit hitInfo;        bool hit = Physics.Raycast(Camera.main.transform.position,                                Camera.main.transform.forward,                                out hitInfo,                                20f,                                SpatialMappingManager.Instance.LayerMask);        if (hit)        {            float offsetDistance = hoverDistance;            // Place the object a small distance away from the surface while keeping             // the object from going behind the user.            if (hitInfo.distance <= hoverDistance)            {                offsetDistance = 0f;            }            moveTo = hitInfo.point + (offsetDistance * hitInfo.normal);            lastDistance = hitInfo.distance;            surfaceNormal = hitInfo.normal;        }        else        {            // The raycast failed to hit a surface.  In this case, keep the object at the distance of the last            // intersected surface.            moveTo = Camera.main.transform.position + (Camera.main.transform.forward * lastDistance);        }        // Follow the user's gaze.        float dist = Mathf.Abs((gameObject.transform.position - moveTo).magnitude);        gameObject.transform.position = Vector3.Lerp(gameObject.transform.position, moveTo, placementVelocity / dist);        // Orient the object.        // We are using the return value from Physics.Raycast to instruct        // the OrientObject function to align to the vertical surface if appropriate.        OrientObject(hit, surfaceNormal);    }    /// <summary>    /// Orients the object so that it faces the user.    /// </summary>    /// <param name="alignToVerticalSurface">    /// If true and the object is to be placed on a vertical surface,     /// orient parallel to the target surface.  If false, orient the object     /// to face the user.    /// </param>    /// <param name="surfaceNormal">    /// The target surface's normal vector.    /// </param>    /// <remarks>    /// The aligntoVerticalSurface parameter is ignored if the object    /// is to be placed on a horizontalSurface    /// </remarks>    private void OrientObject(bool alignToVerticalSurface, Vector3 surfaceNormal)    {        Quaternion rotation = Camera.main.transform.localRotation;        // If the user's gaze does not intersect with the Spatial Mapping mesh,        // orient the object towards the user.        if (alignToVerticalSurface && (PlacementSurface == PlacementSurfaces.Vertical))        {            // We are placing on a vertical surface.            // If the normal of the Spatial Mapping mesh indicates that the            // surface is vertical, orient parallel to the surface.            if (Mathf.Abs(surfaceNormal.y) <= (1 - upNormalThreshold))            {                rotation = Quaternion.LookRotation(-surfaceNormal, Vector3.up);            }        }        else        {            rotation.x = 0f;            rotation.z = 0f;        }        gameObject.transform.rotation = rotation;    }    /// <summary>    /// Displays the bounds asset.    /// </summary>    /// <param name="canBePlaced">    /// Specifies if the object is in a valid placement location.    /// </param>    private void DisplayBounds(bool canBePlaced)    {        // Ensure the bounds asset is sized and positioned correctly.        boundsAsset.transform.localPosition = boxCollider.center;        boundsAsset.transform.localScale = boxCollider.size;        boundsAsset.transform.rotation = gameObject.transform.rotation;        // Apply the appropriate material.        if (canBePlaced)        {            boundsAsset.GetComponent<Renderer>().sharedMaterial = PlaceableBoundsMaterial;        }        else        {            boundsAsset.GetComponent<Renderer>().sharedMaterial = NotPlaceableBoundsMaterial;        }        // Show the bounds asset.        boundsAsset.SetActive(true);    }    /// <summary>    /// Displays the placement shadow asset.    /// </summary>    /// <param name="position">    /// The position at which to place the shadow asset.    /// </param>    /// <param name="surfaceNormal">    /// The normal of the surface on which the asset will be placed    /// </param>    /// <param name="canBePlaced">    /// Specifies if the object is in a valid placement location.    /// </param>    private void DisplayShadow(Vector3 position,                            Vector3 surfaceNormal,                            bool canBePlaced)    {        // Rotate and scale the shadow so that it is displayed on the correct surface and matches the object.        float rotationX = 0.0f;        if (PlacementSurface == PlacementSurfaces.Horizontal)        {            rotationX = 90.0f;            shadowAsset.transform.localScale = new Vector3(boxCollider.size.x, boxCollider.size.z, 1);        }        else        {            shadowAsset.transform.localScale = boxCollider.size;        }        Quaternion rotation = Quaternion.Euler(rotationX, gameObject.transform.rotation.eulerAngles.y, 0);        shadowAsset.transform.rotation = rotation;        // Apply the appropriate material.        if (canBePlaced)        {            shadowAsset.GetComponent<Renderer>().sharedMaterial = PlaceableShadowMaterial;        }        else        {            shadowAsset.GetComponent<Renderer>().sharedMaterial = NotPlaceableShadowMaterial;        }        // Show the shadow asset as appropriate.                if (position != Vector3.zero)        {            // Position the shadow a small distance from the target surface, along the normal.            shadowAsset.transform.position = position + (0.01f * surfaceNormal);            shadowAsset.SetActive(true);        }        else        {            shadowAsset.SetActive(false);        }    }    /// <summary>    /// Determines if two distance values should be considered equivalent.     /// </summary>    /// <param name="d1">    /// Distance to compare.    /// </param>    /// <param name="d2">    /// Distance to compare.    /// </param>    /// <returns>    /// True if the distances are within the desired tolerance, otherwise false.    /// </returns>    private bool IsEquivalentDistance(float d1, float d2)    {        float dist = Mathf.Abs(d1 - d2);        return (dist <= distanceThreshold);    }    /// <summary>    /// Called when the GameObject is unloaded.    /// </summary>    private void OnDestroy()    {        // Unload objects we have created.        Destroy(boundsAsset);        boundsAsset = null;        Destroy(shadowAsset);        shadowAsset = null;    }}

编译部署

  • 部署到HoloLens。
  • 等待空间映射数据的扫描和处理完成。
  • 当你看到太阳系时,凝视下面的投影仪,用select手势来移动它。在选中投影仪的同时,投影仪周围将出现一个边界立方体。
  • 移动你的头凝视在房间的另一个位置。投影仪会跟随你的目光。当投影仪下方的阴影变红时,不能将hologram放置在该表面上。当投影仪下方的阴影变为绿色时,可以用select手势放置。
  • 找到并选择一个墙上的全息海报,将其移动到一个新的位置。请注意,您不能将海报放在地板或天花板上,并且在您移动时它会保持正确朝向。

5 遮挡

目标

  • 判断hologram是否被空间映射网格遮挡
  • 使用不同的遮挡技术实现有趣的效果

步骤

首先,我们将允许空间映射网格遮挡hologram,但不遮挡真实世界
- 选中场景中SpatialProcessing物体,将Play Space Manager (Script)组件的Secondary Material属性设置为 Occlusion

然后我们给场景中的地球添加一个特殊的效果,当它被其他hologram(如太阳)或者空间映射网格遮挡时显示为蓝色高亮效果
- 在Holograms文件夹,展开SolarSystem,点击Earch,将他的shader改为 Custom > OcclusionRim。这个shader可以使他被遮挡时显示蓝色高亮描边

最后,给太阳系加上一个X光透视效果。我们需要编辑PlanetOcclusion.cs (Scripts\SolarSystem folder) 来实现以下功能:
1. 判断一个星球是否被 SpatialMapping 层(房间网格和平面)遮挡
2. 当星球被遮挡时,使用线框显示
3. 星球没被遮挡时,隐藏线框显示

根据PlanetOcclusion.cs中的注释提示补全代码,最终代码如下:

using UnityEngine;using Academy.HoloToolkit.Unity;/// <summary>/// Determines when the occluded version of the planet should be visible./// This script allows us to do selective occlusion, so the occlusionObject/// will only be rendered when a Spatial Mapping surface is occluding the planet,/// not when another hologram is responsible for the occlusion./// </summary>public class PlanetOcclusion : MonoBehaviour{    [Tooltip("Object to display when the planet is occluded.")]    public GameObject occlusionObject;    /// <summary>    /// Points to raycast to when checking for occlusion.    /// </summary>    private Vector3[] checkPoints;    // Use this for initialization    void Start()    {        occlusionObject.SetActive(false);        // Set the check points to use when testing for occlusion.        MeshFilter filter = gameObject.GetComponent<MeshFilter>();        Vector3 extents = filter.mesh.bounds.extents;        Vector3 center = filter.mesh.bounds.center;        Vector3 top = new Vector3(center.x, center.y + extents.y, center.z);        Vector3 left = new Vector3(center.x - extents.x, center.y, center.z);        Vector3 right = new Vector3(center.x + extents.x, center.y, center.z);        Vector3 bottom = new Vector3(center.x, center.y - extents.y, center.z);        checkPoints = new Vector3[] { center, top, left, right, bottom };    }    // Update is called once per frame    void Update()    {        /* TODO: 5.a DEVELOPER CODING EXERCISE 5.a */        // Check to see if any of the planet's boundary points are occluded.        for (int i = 0; i < checkPoints.Length; i++)        {            // 5.a: Convert the current checkPoint to world coordinates.            // Call gameObject.transform.TransformPoint(checkPoints[i]).            // Assign the result to a new Vector3 variable called 'checkPt'.            Vector3 checkPt = gameObject.transform.TransformPoint(checkPoints[i]);            // 5.a: Call Vector3.Distance() to calculate the distance            // between the Main Camera's position and 'checkPt'.            // Assign the result to a new float variable called 'distance'.            float distance = Vector3.Distance(Camera.main.transform.position, checkPt);            // 5.a: Take 'checkPt' and subtract the Main Camera's position from it.            // Assign the result to a new Vector3 variable called 'direction'.            Vector3 direction = checkPt - Camera.main.transform.position;            // Used to indicate if the call to Physics.Raycast() was successful.            bool raycastHit = false;            // 5.a: Check if the planet is occluded by a spatial mapping surface.            // Call Physics.Raycast() with the following arguments:            // - Pass in the Main Camera's position as the origin.            // - Pass in 'direction' for the direction.            // - Pass in 'distance' for the maxDistance.            // - Pass in SpatialMappingManager.Instance.LayerMask as layerMask.            // Assign the result to 'raycastHit'.            raycastHit = Physics.Raycast(Camera.main.transform.position, direction, distance, SpatialMappingManager.Instance.LayerMask);            if (raycastHit)            {                // 5.a: Our raycast hit a surface, so the planet is occluded.                // Set the occlusionObject to active.                occlusionObject.SetActive(true);                // At least one point is occluded, so break from the loop.                break;            }            else            {                // 5.a: The Raycast did not hit, so the planet is not occluded.                // Deactivate the occlusionObject.                occlusionObject.SetActive(false);            }        }    }}

编译部署

  • 部署到Hololens
  • 等待空间映射数据的扫描和处理完成(你应该看到墙上出现蓝线)。
  • 找到并选择太阳系的投影仪,然后投影仪放在墙上或柜台后面。
  • 您可以将海报或投影仪放在物体后面来查看基本遮挡。
  • 找到地球,每当它在另一个全息图或面后面,应该有一个蓝色的高光效果。
  • 观看行星移动到房间的墙壁或其他表面之后。你现在有X光透视,可以看到他们的线框骨架!

总结

恭喜!你现在已经完成空间映射高级篇的学习。
- 知道如何扫描您的环境并将空间映射数据加载到Unity。
- 了解着色器的基础知识以及如何使用材质让世界有不同效果。
- 了解了寻找平面和从网格中去除三角形的新处理技术。
- 可以将全息图移动并放置在有意义的表面上。
- 了解不同的遮挡技术,并掌握X光透视超能力!


洪流学堂,最科学的Unity3d学习路线,让你快人一步掌握Unity3d开发核心技术!

阅读全文
0 0
原创粉丝点击