Android 8.0系统源码分析--Message发送、处理过程源码分析

来源:互联网 发布:淘宝直通车在哪开通 编辑:程序博客网 时间:2024/06/03 15:33

     上节我们分析了应用进程中的Looper和MessageQueue创建过程,接下来我们来看看Message是如何发送到当前的MessageQueue上并且它是如何得到处理的。

     一、Message的发送过程

     发送一个Message对于应用来说,非常简单,就是调用handler.sendMessage方法,就可以将一个封装好的Message发送出去了,或者调用handler.post(Runnable r)也可以,两种调用往下的实现是完全一样的。我们就以sendMessage为入口来看一下Message发送的过程。该方法的实现在Handler.java类中,目录路径为frameworks\base\core\java\android\os\Handler.java,sendMessage方法的源码如下:

    public final boolean sendMessage(Message msg)    {        return sendMessageDelayed(msg, 0);    }    public final boolean sendMessageDelayed(Message msg, long delayMillis)    {        if (delayMillis < 0) {            delayMillis = 0;        }        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);    }    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {        MessageQueue queue = mQueue;        if (queue == null) {            RuntimeException e = new RuntimeException(                    this + " sendMessageAtTime() called with no mQueue");            Log.w("Looper", e.getMessage(), e);            return false;        }        return enqueueMessage(queue, msg, uptimeMillis);    }


     参数delayMillis表示当前的Message的延迟时间,上面的逻辑都很简单,最终是调用enqueueMessage来将一条消息入队的,enqueueMessage方法的源码如下:

    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {        msg.target = this;        if (mAsynchronous) {            msg.setAsynchronous(true);        }        return queue.enqueueMessage(msg, uptimeMillis);    }

     该方法的第一句就是给当前的message的target赋值,表示该message最终由谁处理,一般我们都会构造自己的handler,所以最终该消息得到分发的时候,目标就是我们重写的handler了,接着调用queue局部变量的enqueueMessage方法来将该message入队,queue局部变量的类型为MessageQueue,它指向的就是执行当前逻辑的Looper对象的mQueue成员变量,也就是上一节我们分析Looper创建过程中创建好的。MessageQueue类的目录路径为frameworks\base\core\java\android\os\MessageQueue.java,enqueueMessage方法的源码如下:

    boolean enqueueMessage(Message msg, long when) {        if (msg.target == null) {            throw new IllegalArgumentException("Message must have a target.");        }        if (msg.isInUse()) {            throw new IllegalStateException(msg + " This message is already in use.");        }        synchronized (this) {            if (mQuitting) {                IllegalStateException e = new IllegalStateException(                        msg.target + " sending message to a Handler on a dead thread");                Log.w(TAG, e.getMessage(), e);                msg.recycle();                return false;            }            msg.markInUse();            msg.when = when;            Message p = mMessages;            boolean needWake;            if (p == null || when == 0 || when < p.when) {                // New head, wake up the event queue if blocked.                msg.next = p;                mMessages = msg;                needWake = mBlocked;            } else {                // Inserted within the middle of the queue.  Usually we don't have to wake                // up the event queue unless there is a barrier at the head of the queue                // and the message is the earliest asynchronous message in the queue.                needWake = mBlocked && p.target == null && msg.isAsynchronous();                Message prev;                for (;;) {                    prev = p;                    p = p.next;                    if (p == null || when < p.when) {                        break;                    }                    if (needWake && p.isAsynchronous()) {                        needWake = false;                    }                }                msg.next = p; // invariant: p == prev.next                prev.next = msg;            }            // We can assume mPtr != 0 because mQuitting is false.            if (needWake) {                nativeWake(mPtr);            }        }        return true;    }

     该方法中前面的逻辑的目的就是寻找到一个合适的位置,把当前的message对象挂载进去,上一节我们已经说了MessageQueue类的mMessages成员变量,它的类型为Message,而Message又是一个单向链表,可以不断的往它的成员变量next上指定下一个message,所以只要发送message,就会不断的往上面一个合适的节点挂载。挂载完成后根据局部变量needWake的值来判断是否要唤醒当前的Looper循环,如果我们发送的message需要延迟,而且时间没到,那么就不需要,MessageQueue类的next方法中就会去修改局部变量nextPollTimeoutMillis的值,让Looper循环继续休眠,否则说明消息的处理时间到了,那么就接着调用nativeWake函数来唤醒Looper循环。nativeWake方法的实现在android_os_MessageQueue.cpp文件中,目录路径为frameworks\base\core\jni\android_os_MessageQueue.cpp,nativeWake方法的源码如下:

static void android_os_MessageQueue_nativeWake(JNIEnv* env, jclass clazz, jlong ptr) {    NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);    nativeMessageQueue->wake();}

     这里就是直接调用NativeMessageQueue类的wake方法继续处理,wake方法的源码如下:

void NativeMessageQueue::wake() {    mLooper->wake();}

     这里也是直接调用Looper类的wake方法继续处理,Looper类的目录路径为system\core\libutils\Looper.cpp,wake方法的源码如下:

void Looper::wake() {#if DEBUG_POLL_AND_WAKE    ALOGD("%p ~ wake", this);#endif    uint64_t inc = 1;    ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &inc, sizeof(uint64_t)));    if (nWrite != sizeof(uint64_t)) {        if (errno != EAGAIN) {            LOG_ALWAYS_FATAL("Could not write wake signal to fd %d: %s",                    mWakeEventFd, strerror(errno));        }    }}

     这里的逻辑比较简单,就是调用write系统函数往native层的Looper对象初始化时创建的Event文件描述符mWakeEventFd上写入一个整数1,老罗的博客上也说了,这里写入什么内容其实无关紧要,因为该方法的目的是唤醒该线程的Looper循环,而要处理的Message已经保存的MessageQueue对象的成员变量mMessages链表中了。Linux的event机制在发现mWakeEventFd文件描述符上有事件发生时,那么就会从Looper类的pollInner方法中的epoll_wait唤醒,继续处理消息。我们再来看一下Looper类的pollInner方法,源码如下:

int Looper::pollInner(int timeoutMillis) {#if DEBUG_POLL_AND_WAKE    ALOGD("%p ~ pollOnce - waiting: timeoutMillis=%d", this, timeoutMillis);#endif    // Adjust the timeout based on when the next message is due.    if (timeoutMillis != 0 && mNextMessageUptime != LLONG_MAX) {        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);        int messageTimeoutMillis = toMillisecondTimeoutDelay(now, mNextMessageUptime);        if (messageTimeoutMillis >= 0                && (timeoutMillis < 0 || messageTimeoutMillis < timeoutMillis)) {            timeoutMillis = messageTimeoutMillis;        }#if DEBUG_POLL_AND_WAKE        ALOGD("%p ~ pollOnce - next message in %" PRId64 "ns, adjusted timeout: timeoutMillis=%d",                this, mNextMessageUptime - now, timeoutMillis);#endif    }    // Poll.    int result = POLL_WAKE;    mResponses.clear();    mResponseIndex = 0;    // We are about to idle.    mPolling = true;    struct epoll_event eventItems[EPOLL_MAX_EVENTS];    int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);    // No longer idling.    mPolling = false;    // Acquire lock.    mLock.lock();    // Rebuild epoll set if needed.    if (mEpollRebuildRequired) {        mEpollRebuildRequired = false;        rebuildEpollLocked();        goto Done;    }    // Check for poll error.    if (eventCount < 0) {        if (errno == EINTR) {            goto Done;        }        ALOGW("Poll failed with an unexpected error: %s", strerror(errno));        result = POLL_ERROR;        goto Done;    }    // Check for poll timeout.    if (eventCount == 0) {#if DEBUG_POLL_AND_WAKE        ALOGD("%p ~ pollOnce - timeout", this);#endif        result = POLL_TIMEOUT;        goto Done;    }    // Handle all events.#if DEBUG_POLL_AND_WAKE    ALOGD("%p ~ pollOnce - handling events from %d fds", this, eventCount);#endif    for (int i = 0; i < eventCount; i++) {        int fd = eventItems[i].data.fd;        uint32_t epollEvents = eventItems[i].events;        if (fd == mWakeEventFd) {            if (epollEvents & EPOLLIN) {                awoken();            } else {                ALOGW("Ignoring unexpected epoll events 0x%x on wake event fd.", epollEvents);            }        } else {            ssize_t requestIndex = mRequests.indexOfKey(fd);            if (requestIndex >= 0) {                int events = 0;                if (epollEvents & EPOLLIN) events |= EVENT_INPUT;                if (epollEvents & EPOLLOUT) events |= EVENT_OUTPUT;                if (epollEvents & EPOLLERR) events |= EVENT_ERROR;                if (epollEvents & EPOLLHUP) events |= EVENT_HANGUP;                pushResponse(events, mRequests.valueAt(requestIndex));            } else {                ALOGW("Ignoring unexpected epoll events 0x%x on fd %d that is "                        "no longer registered.", epollEvents, fd);            }        }    }Done: ;    // Invoke pending message callbacks.    mNextMessageUptime = LLONG_MAX;    while (mMessageEnvelopes.size() != 0) {        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);        const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0);        if (messageEnvelope.uptime <= now) {            // Remove the envelope from the list.            // We keep a strong reference to the handler until the call to handleMessage            // finishes.  Then we drop it so that the handler can be deleted *before*            // we reacquire our lock.            { // obtain handler                sp<MessageHandler> handler = messageEnvelope.handler;                Message message = messageEnvelope.message;                mMessageEnvelopes.removeAt(0);                mSendingMessage = true;                mLock.unlock();#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS                ALOGD("%p ~ pollOnce - sending message: handler=%p, what=%d",                        this, handler.get(), message.what);#endif                handler->handleMessage(message);            } // release handler            mLock.lock();            mSendingMessage = false;            result = POLL_CALLBACK;        } else {            // The last message left at the head of the queue determines the next wakeup time.            mNextMessageUptime = messageEnvelope.uptime;            break;        }    }    // Release lock.    mLock.unlock();    // Invoke all response callbacks.    for (size_t i = 0; i < mResponses.size(); i++) {        Response& response = mResponses.editItemAt(i);        if (response.request.ident == POLL_CALLBACK) {            int fd = response.request.fd;            int events = response.events;            void* data = response.request.data;#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS            ALOGD("%p ~ pollOnce - invoking fd event callback %p: fd=%d, events=0x%x, data=%p",                    this, response.request.callback.get(), fd, events, data);#endif            // Invoke the callback.  Note that the file descriptor may be closed by            // the callback (and potentially even reused) before the function returns so            // we need to be a little careful when removing the file descriptor afterwards.            int callbackResult = response.request.callback->handleEvent(fd, events, data);            if (callbackResult == 0) {                removeFd(fd, response.request.seq);            }            // Clear the callback reference in the response structure promptly because we            // will not clear the response vector itself until the next poll.            response.request.callback.clear();            result = POLL_CALLBACK;        }    }    return result;}

     当epoll_wait逻辑返回时,就会得到当前的消息数量eventCount,当前场景下,该值大于0,那么就会在for (int i = 0; i < eventCount; i++) 循环中取消息进行处理,当前事件的fd、epollEvents分别为mWakeEventFd、EPOLLIN,它们都是在Looper对象初始化时,在rebuildEpollLocked方法中构造struct epoll_event eventItem结构体时赋值的,所以就执行awoken函数,该函数的源码如下:

void Looper::awoken() {#if DEBUG_POLL_AND_WAKE    ALOGD("%p ~ awoken", this);#endif    uint64_t counter;    TEMP_FAILURE_RETRY(read(mWakeEventFd, &counter, sizeof(uint64_t)));}

     该函数就是调用系统函数read将产生在mWakeEventFd文件描述符上的事件读取出来,清空管道,以免事件重复。pollInner方法中下面的逻辑就是判断mResponses中是否有回调需要处理,处理完成后就会一层层返回到Java层的MessageQueue类的next方法中了,那么下次再从mMessages链表中取消息时,就会有消息了。

     二、Message的处理过程

     经过上面的分析,我们知道当Looper循环中有消息需要处理时,那么MessageQueue类的next方法就会去找当前需要处理的Message消息,MessageQueue类的next方法的源码如下:

    Message next() {        // Return here if the message loop has already quit and been disposed.        // This can happen if the application tries to restart a looper after quit        // which is not supported.        final long ptr = mPtr;        if (ptr == 0) {            return null;        }        int pendingIdleHandlerCount = -1; // -1 only during first iteration        int nextPollTimeoutMillis = 0;        for (;;) {            if (nextPollTimeoutMillis != 0) {                Binder.flushPendingCommands();            }            nativePollOnce(ptr, nextPollTimeoutMillis);            synchronized (this) {                // Try to retrieve the next message.  Return if found.                final long now = SystemClock.uptimeMillis();                Message prevMsg = null;                Message msg = mMessages;                if (msg != null && msg.target == null) {                    // Stalled by a barrier.  Find the next asynchronous message in the queue.                    do {                        prevMsg = msg;                        msg = msg.next;                    } while (msg != null && !msg.isAsynchronous());                }                if (msg != null) {                    if (now < msg.when) {                        // Next message is not ready.  Set a timeout to wake up when it is ready.                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);                    } else {                        // Got a message.                        mBlocked = false;                        if (prevMsg != null) {                            prevMsg.next = msg.next;                        } else {                            mMessages = msg.next;                        }                        msg.next = null;                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);                        msg.markInUse();                        return msg;                    }                } else {                    // No more messages.                    nextPollTimeoutMillis = -1;                }                // Process the quit message now that all pending messages have been handled.                if (mQuitting) {                    dispose();                    return null;                }                // If first time idle, then get the number of idlers to run.                // Idle handles only run if the queue is empty or if the first message                // in the queue (possibly a barrier) is due to be handled in the future.                if (pendingIdleHandlerCount < 0                        && (mMessages == null || now < mMessages.when)) {                    pendingIdleHandlerCount = mIdleHandlers.size();                }                if (pendingIdleHandlerCount <= 0) {                    // No idle handlers to run.  Loop and wait some more.                    mBlocked = true;                    continue;                }                if (mPendingIdleHandlers == null) {                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];                }                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);            }            // Run the idle handlers.            // We only ever reach this code block during the first iteration.            for (int i = 0; i < pendingIdleHandlerCount; i++) {                final IdleHandler idler = mPendingIdleHandlers[i];                mPendingIdleHandlers[i] = null; // release the reference to the handler                boolean keep = false;                try {                    keep = idler.queueIdle();                } catch (Throwable t) {                    Log.wtf(TAG, "IdleHandler threw exception", t);                }                if (!keep) {                    synchronized (this) {                        mIdleHandlers.remove(idler);                    }                }            }            // Reset the idle handler count to 0 so we do not run them again.            pendingIdleHandlerCount = 0;            // While calling an idle handler, a new message could have been delivered            // so go back and look again for a pending message without waiting.            nextPollTimeoutMillis = 0;        }    }

     它就是在当前的链表中查找是否有合适的Message,找到的话,就返回当前的Message对象,该方法返回后就会到Looper类的loop方法的无限循环中,Looper类的loop方法的源码如下:

    /**     * Run the message queue in this thread. Be sure to call     * {@link #quit()} to end the loop.     */    public static void loop() {        final Looper me = myLooper();        if (me == null) {            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");        }        final MessageQueue queue = me.mQueue;        // Make sure the identity of this thread is that of the local process,        // and keep track of what that identity token actually is.        Binder.clearCallingIdentity();        final long ident = Binder.clearCallingIdentity();        for (; ; ) {            Message msg = queue.next(); // might block            if (msg == null) {                // No message indicates that the message queue is quitting.                return;            }            // This must be in a local variable, in case a UI event sets the logger            final Printer logging = me.mLogging;            if (logging != null) {                logging.println(">>>>> Dispatching to " + msg.target + " " +                        msg.callback + ": " + msg.what);            }            final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;            final long traceTag = me.mTraceTag;            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));            }            final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();            final long end;            try {                msg.target.dispatchMessage(msg);                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();            } finally {                if (traceTag != 0) {                    Trace.traceEnd(traceTag);                }            }            if (slowDispatchThresholdMs > 0) {                final long time = end - start;                if (time > slowDispatchThresholdMs) {                    Slog.w(TAG, "Dispatch took " + time + "ms on "                            + Thread.currentThread().getName() + ", h=" +                            msg.target + " cb=" + msg.callback + " msg=" + msg.what);                }            }            if (logging != null) {                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);            }            // Make sure that during the course of dispatching the            // identity of the thread wasn't corrupted.            final long newIdent = Binder.clearCallingIdentity();            if (ident != newIdent) {                Log.wtf(TAG, "Thread identity changed from 0x"                        + Long.toHexString(ident) + " to 0x"                        + Long.toHexString(newIdent) + " while dispatching to "                        + msg.target.getClass().getName() + " "                        + msg.callback + " what=" + msg.what);            }            msg.recycleUnchecked();        }    }

     Message msg = queue.next()逻辑返回后,我们就拿到的当前需要处理的msg,如果msg为空,那么loop方法也就结束了,说明没有该Looper循环已经完成使命了。所以大家可以回头看一下MessageQueue类的next方法,只有在mQuitting为true时才会返回null,其他场景下要么找到合适的msg进行处理,要么就是执行nativePollOnce进入休眠,拿到了目标msg,接着就调用sg.target.dispatchMessage(msg)对它进行处理,当前msg的成员变量target就是前面它的发送过程中赋值的,target的类型为Handler,我们接着来看一下Handler类的dispatchMessage方法,Handler类的的目录路径为:frameworks\base\core\java\android\os\Handler.java,dispatchMessage方法的源码如下:

    /**     * Handle system messages here.     */    public void dispatchMessage(Message msg) {        if (msg.callback != null) {            handleCallback(msg);        } else {            if (mCallback != null) {                if (mCallback.handleMessage(msg)) {                    return;                }            }            handleMessage(msg);        }    }

     首先判断当前msg的回调接口callback是否为空,如果不为空,则调用handleCallback处理,Message类的成员变量callback的类型为Runnable,也就是调用它的run方法去执行我们自己的逻辑,这里也就是发送message时,我们调用handler.post(Runnable run)对应上了;如果当前Message的callback为空,那么继续判断当前Handler的成员变量mCallback是否为空,该成员变量是在Handler对象的构造方法中传入的,相当于系统给我们多预留了一个出口,我们可以把当前Handler上所有的消息取出来放在自己定义的Callback中去处理,如果mCallback也为空,那么就调用handleMessage去处理了,我们一般也就是要重写该方法来处理我们自己的逻辑。

     这里还需要说明一点,之前有些项目中,我有看到有些同事直接重写Handler类的dispatchMessage方法,这样其实很不妥,从上面的处理过程可以看到,系统给我们预留了足够多的地方去处理message,而dispatchMessage方法是从Looper类回调过来的入口,假如我们按照一般的逻辑去判断msg.what进行消息处理,那么就会导致那些post的消息无法分发了,所以还是老老实实重写handleMessage方法就可以了。

     好,Looper、MessageQueue的消息循环我们就分析到这里了。

阅读全文
0 0
原创粉丝点击