使用pgrouting和geotools实现最短路径,服务区分析

来源:互联网 发布:linux 下载命令 编辑:程序博客网 时间:2024/05/16 18:54

1本文主要讲解服务区分析的实现(最优路径已经有很多文章了)

设施服务范围指在一定限制条件下(如时间、费用或路程等)设施所能提供服务的最大空间领域, 在道路网络环境中,它通常由一系列结点及边组成。例如, 某救助站在接到求救电话后10 min 所能到达的区域;某物流公司在配送货物时500元花费所能到达的区域等。

(1)根据拓扑关系,计算地理网络的最大邻接结点数;

(2)构造邻接结点矩阵和初始判断矩阵描述地理网络结构;

(3)应用广度优先搜索算法确定地理网络中心服务范围。

本算法是对Dijkstra最短路径算法的改进(简称“最短路径算法”)。首先, 将网络中所有结点初始化为未标记结点。然后从起点(第一次搜索的起点为网络中心)开始搜索与其有路径连通的未标记结点, 计算阻值, 并将起点标记为已标记结点, 重复上述过程, 直到某结点的阻值超过网络中心的阻值。最后, 基于结点及边的阻值搜索并存储所有在中心阻值范围内的边, 这些边和结点的集合为网络中心的服务范围。

(但实际情况中可能需要内插一些点,直到找到阻值等于网络中心的阻值为止)


2实现过程:<1>数据读取:直接读取shp

//1读取shp文件,得到pgDatastorepublic static void conShp(String path){try {File file=new File(path);Map<String, Object> map = new HashMap<String, Object>();map.put("url", file.toURI().toURL());System.out.println(map);pgDatastore = DataStoreFinder.getDataStore(map);} catch (Exception e) {  e.printStackTrace();}}

  从postgis中读取

首先读取postgis数据库得到DataStore对象,然后用getfeaturesource(LayerName)得到SimpleFeatureSource即可(注意:这里的LayerName即为表名)

 //2读取postgis,得到pgDatastore   //链接postgispublic static void conPostGis(String dbtype, String host, String port,             String database, String userName, String password) {         Map<String, Object> params = new HashMap<String, Object>();         params.put(PostgisNGDataStoreFactory.DBTYPE.key, dbtype);         params.put(PostgisNGDataStoreFactory.HOST.key, host);         params.put(PostgisNGDataStoreFactory.PORT.key, new Integer(port));         params.put(PostgisNGDataStoreFactory.DATABASE.key, database);         params.put(PostgisNGDataStoreFactory.SCHEMA.key, "public");         params.put(PostgisNGDataStoreFactory.USER.key, userName);         params.put(PostgisNGDataStoreFactory.PASSWD.key, password);         try {           pgDatastore = DataStoreFinder.getDataStore(params);             if (pgDatastore != null) {                 System.out.println("系统连接到位于:" + host + "的空间数据库" + database                         + "成功!");             } else {                 System.out.println("系统连接到位于:" + host + "的空间数据库" + database                         + "失败!请检查相关参数");             }         } catch (IOException e) {             e.printStackTrace();             System.out.println("系统连接到位于:" + host + "的空间数据库" + database                     + "失败!请检查相关参数");         }     }
//3利用pgDatastore,得到featuresource(表)public static SimpleFeatureSource getFeatureSource(String LayerName) throws IOException{if(pgDatastore==null){System.out.println("还未导入数据源,请导入pgDatastore");return null;}featureSource = pgDatastore.getFeatureSource(LayerName);System.out.println(featureSource.getCount(Query.ALL));    return featureSource;}

 注意事项:

读取postgis时,数据库里面的geom字段不能为二进制

读取文件时,文件中最好不要有中文


<2>进行拓扑将数据处理为Graph

(1)得到SimpleFeatureCollection

(2)创建一个FeatureGraphGenerator利用它添加SimpleFeature元素并调用其getGraph方法创建Graph

(3)创建出来的Graph中保存着V(节点)和E(边),这样就可以进行网络分析了

        //创建graphpublic static Graph getGraph(SimpleFeatureSource source) throws IOException{   if(source==null)  {   System.out.println("资源不存在,请先得到featureSource");return null;}  SimpleFeatureCollection fCollection = source.getFeatures();       //create a linear graph generate  //构图时也可以创建一个DirectedLineStringGraphGenerator构建有向图       LineStringGraphGenerator lineStringGen = new LineStringGraphGenerator();       //wrap it in a feature graph generator       FeatureGraphGenerator featureGen = new FeatureGraphGenerator( lineStringGen );       //throw all the features into the graph generator       FeatureIterator<SimpleFeature> iter = fCollection.features();       try {         while(iter.hasNext()){            Feature feature = iter.next();            featureGen.add(feature);         }       } finally {         iter.close();       }       graph = featureGen.getGraph();       return graph;}

<3>最短路径

(1)最短路径:

使用Astar算法:

1.首先利用AstarFunctions设定权值(即通过此边的消耗)

2.然后设定start点(起点)和target点(终点)

3.调用AstarShortestFinder()来进行处理

具体代码如下:

设定权(成本):

public static double discost(Edge e ){  SimpleFeature feature = (SimpleFeature) e.getObject();      Geometry geom = (Geometry) feature.getDefaultGeometry();      //geom.convexHull()将其构成一个图形      if(Barriers!=null){for(int i=0;i<Barriers.size();i++){Geometry g=Barriers.get(i);if(geom.intersects(g)){return Double.POSITIVE_INFINITY;}}      }      return geom.getLength();}public static double discost(AStarNode n1, AStarNode n2){   Node nd1=n1.getNode();    Node nd2=n2.getNode();Edge e=nd1.getEdge(nd2);if(e!=null){SimpleFeature feature=(SimpleFeature)e.getObject();Geometry geom=(Geometry) feature.getDefaultGeometry();if(Barriers!=null){for(int i=0;i<Barriers.size();i++){Geometry g=Barriers.get(i);if(geom.intersects(g)){return Double.POSITIVE_INFINITY;}}}return ((Point) n1.getNode().getObject()).distance((Point)n2.getNode().getObject());}else{return ((Point) n1.getNode().getObject()).distance((Point)n2.getNode().getObject());}}
               //Astar方法的最短路径计算public static Path searchRouteByAstar(Node source,Node destination) throws Exception{if(graph==null){System.out.println("graph不存在,请构建graph");return null;}if(source.equals(destination)){System.out.println("起点和终点相同,请重新选点");return null;}Path path=null;AStarFunctions afuncs=new AStarFunctions(destination) {@Overridepublic double h(Node n) {//结合Astar的算法可以知道这里的h指的是一个预估的距离destination的消耗值//disPoint指的是预估的终点Point disPoint=(Point)this.getDest().getObject();return ((Point)n.getObject()).distance(disPoint);}@Overridepublic double cost(AStarNode n1, AStarNode n2) {//注意矢量性和有向性return discost(n1, n2);}};AStarShortestPathFinder finder=new AStarShortestPathFinder(graph, source, destination, afuncs);finder.calculate();path=finder.getPath();return path;}
这里是可以看到传入的变量是node节点,但是我们实际中是要在地图上点击一个起点终点求出最优路径,因此还需要将鼠标点击的任意一点归算的graph的节点里去,这里最好使用数据库空间查询来算,本文只是用了最简单的遍历,算法如下:

//搜寻graph上最近节点的方法//暂时先采用遍历的方法//这里如果点隔的太远会直接把pointy输出,调用最短路径算法会抛出空指针异常public static Node getNearestGraphNode(Point pointy){if(graph==null){System.out.println("graph不存在,请构建graph");return null;}double dist=0;Node nearestNode=null;for(Object o:graph.getNodes()){Node n=(Node)o;Point gPoint=(Point)n.getObject();double distance=gPoint.distance(pointy);if(nearestNode==null||distance<dist){dist=distance;nearestNode=n;}}return nearestNode;}
归算到节点之后就可以改造下Astar算法了:

public static Path searchRouteByAstar(Point startPoint,Point endPoint) throws Exception{if(graph==null){System.out.println("graph不存在,请构建graph");return null;}Node source=getNearestGraphNode(startPoint);Node destination=getNearestGraphNode(endPoint);if(source.equals(destination)){System.out.println("起点和终点相同,请重新选点");return null;}Path path=null;AStarFunctions afuncs=new AStarFunctions(destination) {@Overridepublic double h(Node n) {//结合Astar的算法可以知道这里的h指的是一个预估的距离destination的消耗值//disPoint指的是预估的终点Point disPoint=(Point)this.getDest().getObject();return ((Point)n.getObject()).distance(disPoint);}@Overridepublic double cost(AStarNode n1, AStarNode n2) {//注意矢量性和有向性return discost(n1, n2);}};AStarShortestPathFinder finder=new AStarShortestPathFinder(graph, source, destination, afuncs);finder.calculate();path=finder.getPath();return path;}
这样看起来就挺完美了,但是如果要加入障碍点怎么办那?

其实我们在成本计算中已经考虑障碍物了,如果是个障碍范围就与当前的graph求交集,交集处的权设置成无穷就好了,这样就解决了障碍点的问题。

如果是停靠点那?

那就每段都计算一次最优路径加起来就行了。

使用Dijkstra算法:

1.首先利用Edgeweighter设定权值(即通过此边的消耗)

2.然后设定start点(起点)和target点(终点)

3.调用DijkstraShortestPathFinder()来进行处理

dijkstra算法大概差不多,直接贴代码:

//dijkstra方法public static Path searchRouteByDijkstra(Node source,Node destination) throws Exception{if(graph==null){System.out.println("graph不存在,请构建graph");return null;}Path path=null; EdgeWeighter weighter = new EdgeWeighter() {@Overridepublic double getWeight(Edge e) {return discost(e);}};// Create GraphWalker - in this case DijkstraShortestPathFinder   DijkstraShortestPathFinder pf = new DijkstraShortestPathFinder( graph, source, weighter );   pf.calculate();   path= pf.getPath(destination);          return path;}public static Path searchRouteByDijkstra(Point startPoint,Point endPoint) throws Exception{if(graph==null){System.out.println("graph不存在,请构建graph");return null;}Node source=getNearestGraphNode(startPoint);Node destination=getNearestGraphNode(endPoint);Path path=null; EdgeWeighter weighter = new EdgeWeighter() {@Overridepublic double getWeight(Edge e) {return discost(e);}};// Create GraphWalker - in this case DijkstraShortestPathFinder   DijkstraShortestPathFinder pf = new DijkstraShortestPathFinder( graph, source, weighter );   pf.calculate();   path= pf.getPath(destination);          return path;}

<4>服务区分析

改造DijkstraShortestPathFinder方法:

1.首先通过Edgeweighter设定权值(即通过此边的消耗)

2.然后设定start点(起点)

3.最后通过设置一个判定(该判定可能是根据距离也可能是根据时间)来终止该方法的搜索,然后得到该方法返回的所有边和节点。



public static List<Point> getAdjancyPoint(Node node){if(graph==null){System.out.println("graph不存在,请构建graph");return null;}List<Point> points=new ArrayList<Point>(); Point pt=(Point)node.getObject();System.out.println("传入的节点:"+pt);List<Edge> edges=node.getEdges();for(Edge e:edges){Node nodeA=e.getNodeA();Point pa=(Point)nodeA.getObject();Node nodeB=e.getNodeB();Point pb=(Point)nodeB.getObject();if(!pt.equals(pa)){points.add(pa);}else if(!pt.equals(pb)){points.add(pb);}}List<Point>points1=(List<Point>) CollectionUtils.subtract(points,serviceAreaPoints);System.out.println("加入的临近点:"+points1);return points1;}//服务区范围,目前我只是把节点加入进去public static void ServiceArea(Point startPoint, double cost) throws Exception{if(graph==null){System.out.println("graph不存在,请构建graph");return;}Node source=getNearestGraphNode(startPoint);Point pt=(Point)source.getObject();serviceAreaPoints.add(pt);//其实递归应该从这里开始,前面的不用递归List<Point> pts=getAdjancyPoint(source);for(Iterator<?>itr=pts.iterator();itr.hasNext();){Point p=(Point)itr.next();if(p!=null){Geometry geo=iterRoute(searchRouteByAstar(serviceAreaPoints.get(0), p)).getRoutePath();double len=geo.getLength();if(len<=cost){ServiceArea(p, cost);System.out.println("点"+p+"加人serviceArea");}else{System.out.println("点"+p+"不加人serviceArea");}}}}//获得服务区点集合public static Set<Point> getServiceAreaPoints() {    serviceAreaPoints1.clear();serviceAreaPoints1.addAll(serviceAreaPoints);return serviceAreaPoints1;}

这样就完成了服务范围分析。

有什么问题欢迎大家评论与交流。






阅读全文
0 0