详解HBase架构原理

来源:互联网 发布:制作广告的软件 编辑:程序博客网 时间:2024/06/05 05:26

一、什么是HBase

  HBase 是一个高可靠、高性能、面向列、可伸缩的分布式存储系统,利用Hbase技术可在廉价PC Server上搭建 大规模结构化存储集群。

 HBase 是Google Bigtable 的开源实现,与Google Bigtable 利用GFS作为其文件存储系统类似, HBase 利用Hadoop HDFS 作为其文件存储系统;Google 运行MapReduce 来处理Bigtable中的海量数据, HBase 同样利用Hadoop MapReduce来处理HBase中的海量数据;Google Bigtable 利用Chubby作为协同服务, HBase 利用Zookeeper作为对应。

二、HBase 设计模型

   HBase 中的每一张表就是所谓的 BigTable。BigTable 会存储一系列的行记录,行记录有三个基本类型的定义:Row Key、Time Stamp、Column。

1、Row Key 是行在 BigTable 中的唯一标识。

2、Time Stamp 是每次数据操作对应关联的时间戳,可以看做 SVN 的版本。

3、Column 定义为< family>:< label>,通过这两部分可以指定唯一的数据的存储列,family 的定义和修改需要 对 HBase 进行类似于 DB 的 DDL 操作,而 label ,不需要定义直接可以使用,这也为动态定制列提供了一种手段 。family 另一个作用体现在物理存储优化读写操作上,同 family 的数据物理上保存的会比较临近,因此在业务设计的过程中可以利用这个特性。

1、逻辑存储模型

   HBase 以表的形式存储数据。表由行和列组成。列划分为若干个列族(row family),如下图所示。 
        这里写图片描述

下面是对表中元素的详细解析: 
Row Key

与nosql数据库们一样,row key是用来检索记录的主键。访问hbase table中的行,只有三种方式:

1 通过单个row key访问

2 通过row key的range

3 全表扫描

Row key行键 (Row key)可以是任意字符串(最大长度是 64KB,实际应用中长度一般为 10-100bytes),在hbase内部,row key保存为字节数组。

存储时,数据按照Row key的字典序(byte order)排序存储。设计key时,要充分排序存储这个特性,将经常一起读取的行存储放到一起。(位置相关性)

注意: 
1、字典序对int排序的结果是1,10,100,11,12,13,14,15,16,17,18,19,2,20,21,…,9,91,92,93,94,95,96,97,98,99。要保持整形的自然序,行键必须用0作左填充。 
2、行的一次读写是原子操作 (不论一次读写多少列)。

列族

  hbase表中的每个列,都归属与某个列族。列族是表的chema的一部分(而列不是),必须在使用表之前定义。列名都以列族作为前缀。例如courses:history , courses:math 都属于 courses 这个列族。

  访问控制、磁盘和内存的使用统计都是在列族层面进行的。实际应用中,列族上的控制权限能 帮助我们管理不同类型的应用:我们允许一些应用可以添加新的基本数据、一些应用可以读取基本数据并创建继承的列族、一些应用则只允许浏览数据(甚至可能因 为隐私的原因不能浏览所有数据)。

时间戳

  HBase中通过row和columns确定的为一个存贮单元称为cell。每个 cell都保存着同一份数据的多个版本。版本通过时间戳来索引。时间戳的类型是 64位整型。时间戳可以由hbase(在数据写入时自动 )赋值,此时时间戳是精确到毫秒的当前系统时间。时间戳也可以由客户显式赋值。如果应用程序要避免数据版本冲突,就必须自己生成具有唯一性的时间戳。每个 cell中,不同版本的数据按照时间倒序排序,即最新的数据排在最前面。

为了避免数据存在过多版本造成的的管理 (包括存贮和索引)负担,hbase提供了两种数据版本回收方式。一是保存数据的最后n个版本,二是保存最近一段时间内的版本(比如最近七天)。用户可以针对每个列族进行设置。

Cell

由{row key, column( = + 

2、物理存储模型

  Table 在行的方向上分割为多个HRegion,每个HRegion分散在不同的RegionServer中。 


      这里写图片描述 
  

每个HRegion由多个Store构成,每个Store由一个memStore和0或多个StoreFile组成,每个Store保存一个Columns Family 

 
      这里写图片描述

StoreFile以HFile格式存储在HDFS中。

              1.Table 在行的方向上分割为多个Hregion。

Hbase系统架构及数据结构

          2.region按大小分割的,每个表一开始只有一个region,随着数据不断插入表,region不断增大,当增大到一个阀值的时候,Hregion就会等分会两个新的Hregion。当table中的行不断增多,就会有越来越多的Hregion。

Hbase系统架构及数据结构

         3. HRegion是Hbase中分布式存储和负载均衡的最小单元。最小单元就表示不同的Hregion可以分布在不同的HRegion server上。但一个Hregion是不会拆分到多个server上的。

Hbase系统架构及数据结构

Hbase系统架构及数据结构

         4. HRegion虽然是分布式存储的最小单元,但并不是存储的最小单元。

事实上,HRegion由一个或者多个Store组成,每个store保存一个columns family。

每个Strore又由一个memStore和0至多个StoreFile组成。如图:

StoreFile以HFile格式保存在HDFS上。

Hbase系统架构及数据结构

           HFile的格式为:

Hbase系统架构及数据结构

 

         HFile分为六个部分:

Data Block 段–保存表中的数据,这部分可以被压缩

Meta Block 段 (可选的)–保存用户自定义的kv对,可以被压缩。

File Info 段–Hfile的元信息,不被压缩,用户也可以在这一部分添加自己的元信息。

Data Block Index 段–Data Block的索引。每条索引的key是被索引的block的第一条记录的key。

Meta Block Index段 (可选的)–Meta Block的索引。

Trailer– 这一段是定长的。保存了每一段的偏移量,读取一个HFile时,会首先读取Trailer,Trailer保存了每个段的起始位置(段的Magic Number用来做安全check),然后,DataBlock Index会被读取到内存中,这样,当检索某个key时,不需要扫描整个HFile,而只需从内存中找到key所在的block,通过一次磁盘io将整个 block读取到内存中,再找到需要的key。DataBlock Index采用LRU机制淘汰。

HFile的Data Block,Meta Block通常采用压缩方式存储,压缩之后可以大大减少网络IO和磁盘IO,随之而来的开销当然是需要花费cpu进行压缩和解压缩。

目标Hfile的压缩支持两种方式:Gzip,Lzo。

三、HBase 存储架构

  从HBase的架构图上可以看出,HBase中的存储包括HMaster、HRegionServer、HRegion、Store、MemStore、StoreFile、HFile、HLog等, 以下是 HBase 存储架构图: 
   
这里写图片描述  

  Hbase系统架构及数据结构

      HBase中的每张表都通过行键按照一定的范围被分割成多个子表(HRegion),默认一个HRegion超过256M就要被分割成两个,这个过程由HRegionServer管理,而HRegion的分配由HMaster管理。

Zookeeper

1 保证任何时候,集群中只有一个master

2 存贮所有Region的寻址入口。

3 实时监控Region Server的状态,将Region server的上线和下线信息实时通知给Master

4 存储Hbase的schema,包括有哪些table,每个table有哪些column family

HMaster的作用: 

   1、 为Region server分配region。 
   
   2、 负责Region server的负载均衡。

   3、发现失效的Region server并重新分配其上的region。

  4、 HDFS上的垃圾文件回收。

   5、 处理schema更新请求。

HRegionServer作用: 
   
   1、 维护master分配给他的region,处理对这些region的io请求。

   2、 负责切分正在运行过程中变的过大的region。

   可以看到,client访问hbase上的数据并不需要master参与(寻址访问zookeeper和region server,数据读写访问region server),master仅仅维护table和region的元数据信息(table的元数据信息保存在zookeeper上),负载很低。 HRegionServer存取一个子表时,会创建一个HRegion对象,然后对表的每个列族创建一个Store实例,每个Store都会有一个MemStore和0个或多个StoreFile与之对应,每个StoreFile都会对应一个HFile, HFile就是实际的存储文件。因此,一个HRegion有多少个列族就有多少个Store。 一个HRegionServer会有多个HRegion和一个HLog。

HRegion

  table在行的方向上分隔为多个Region。Region是HBase中分布式存储和负载均衡的最小单元,即不同的region可以分别在不同的Region Server上,但同一个Region是不会拆分到多个server上。

  Region按大小分隔,每个表一般是只有一个region。随着数据不断插入表,region不断增大,当region的某个列族达到一个阈值(默认256M)时就会分成两个新的region。

   1、< 表名,startRowkey,创建时间>

   2、由目录表(META.)记录该region的endRowkey

   HRegion定位:Region被分配给哪个Region Server是完全动态的,所以需要机制来定位Region具体在哪个region server。 
   HBase使用三层结构来定位region:

   1、 通过zk里的文件/hbase/rs得到-ROOT-表的位置。-ROOT-表只有一个region。

  2、通过-ROOT-表查找.META.表的第一个表中相应的region的位置。其实-ROOT-表是.META.表的第一个region;.META.表中的每一个region在-ROOT-表中都是一行记录。 
   
 3、通过.META.表找到所要的用户表region的位置。用户表中的每个region在.META.表中都是一行记录。

   -ROOT-表永远不会被分隔为多个region,保证了最多需要三次跳转,就能定位到任意的region。client会将查询的位置信息保存缓存起来,缓存不会主动失效,因此如果client上的缓存全部失效,则需要进行6次网络来回,才能定位到正确的region,其中三次用来发现缓存失效,另外三次用来获取位置信息。 
   
Store 

   
  每一个region由一个或多个store组成,至少是一个store,hbase会把一起访问的数据放在一个store里面,即为每个ColumnFamily建一个store,如果有几个ColumnFamily,也就有几个Store。一个Store由一个memStore和0或者多个StoreFile组成。 HBase以store的大小来判断是否需要切分region。  

HBase容错性

Master容错:Zookeeper重新选择一个新的Master

无Master过程中,数据读取仍照常进行;

无master过程中,region切分、负载均衡等无法进行;

RegionServer容错:定时向Zookeeper汇报心跳,如果一旦时间内未出现心跳,Master将该RegionServer上的Region重新分配到其他RegionServer上,失效服务器上“预写”日志由主服务器进行分割并派送给新的RegionServer

Zookeeper容错:Zookeeper是一个可靠地服务,一般配置3或5个Zookeeper实例

Region定位流程:

寻找RegionServer

ZooKeeper--> -ROOT-(单Region)--> .META.--> 用户表

-ROOT-

表包含.META.表所在的region列表,该表只会有一个Region;

Zookeeper中记录了-ROOT-表的location。

.META.

表包含所有的用户空间region列表,以及RegionServer的服务器地址。

RegionServer定位

访问HBase通过HBase客户端(或API)进行,整个HBase提供给外部的地址,其实是ZK的入口,前面也介绍了,ZK中有保存-ROOT-所在的RS地址,从-ROOT-表可以获取.META.表信息,根据.META.表可以获取region在RS上的分布,整个region寻址过程大致如下


RS定位过程

首先,Client通过访问ZK来请求目标数据的地址。
ZK中保存了-ROOT-表的地址,所以ZK通过访问-ROOT-表来请求数据地址。
同样,-ROOT-表中保存的是.META.的信息,通过访问.META.表来获取具体的RS。
.META.表查询到具体RS信息后返回具体RS地址给Client。
Client端获取到目标地址后,然后直接向该地址发送数据请求。

上述过程其实是一个三层索引结构,从ZK获取-ROOT-信息,再从-ROOT-获取.META.表信息,最后从.META.表中查到RS地址后缓存。

这里有几个问题:

既然ZK中能保存-ROOT-信息,那么为什么不把.META.信息直接保存在ZK中,而需要通过-ROOT-表来定位?
Client查找到目标地址后,下一次请求还需要走ZK  —> -ROOT- —> .META.这个流程么?

先来回答第一个问题:为什么不直接把.META.表信息直接保存到ZK中?主要是为了保存的数据量考虑,ZK中不宜保存大量数据,而.META.表主要是保存Region和RS的映射信息,region的数量没有具体约束,只要在内存允许的范围内,region数量可以有很多,如果保存在ZK中,ZK的压力会很大。所以,通过一个-ROOT-表来转存到RS中是一个比较理想的方案,相比直接保存在ZK中,也就多了一层-ROOT-表的查询,对性能来说影响不大。

第二个问题:每次访问都需要走ZK –> -ROOT- —> .META.的流程么?当然不需要,Client端有缓存,第一次查询到相应region所在RS后,这个信息将被缓存到Client端,以后每次访问都直接从缓存中获取RS地址即可。

当然这里有个意外:访问的region若果在RS上发生了改变,比如被balancer迁移到其他RS上了,这个时候,通过缓存的地址访问会出现异常,在出现异常的情况下,Client需要重新走一遍上面的流程来获取新的RS地址。总体来说,region的变动只会在极少数情况下发生,一般变动不会很大,所以在整个集群访问过程中,影响可以忽略。


Region数据写入

HBase通过ZK —> -ROOT-  —> .META.的访问获取RS地址后,直接向该RS上进行数据写入操作,整个过程如下图:

RegionServer数据操作过程


Client通过三层索引获得RS的地址后,即可向指定RS的对应region进行数据写入,HBase的数据写入采用WAL(write ahead log)的形式,先写log,后写数据。

HBase是一个append类型的数据库,没有关系型数据库那么复杂的操作,所以记录HLog的操作都是简单的put操作(delete/update操作都被转化为put进行)


MemStore

  memStore 是放在内存里的。保存修改的数据即keyValues。当memStore的大小达到一个阀值(默认64MB)时,memStore会被flush到文件,即生成一个快照。目前hbase 会有一个线程来负责memStore的flush操作。 
   
StoreFile

   memStore内存中的数据写到文件后就是StoreFile,StoreFile底层是以HFile的格式保存。 
HFile

   HBase中KeyValue数据的存储格式,是hadoop的二进制格式文件。 首先HFile文件是不定长的,长度固定的只有其中的两块:Trailer和FileInfo。Trailer中有指针指向其他数据块的起始点,FileInfo记录了文件的一些meta信息。 Data Block是hbase io的基本单元,为了提高效率,HRegionServer中有基于LRU的block cache机制。每个Data块的大小可以在创建一个Table的时候通过参数指定(默认块大小64KB),大号的Block有利于顺序Scan,小号的Block利于随机查询。每个Data块除了开头的Magic以外就是一个个KeyValue对拼接而成,Magic内容就是一些随机数字,目的是防止数据损坏,结构如下。 
 这里写图片描述 
HFile结构图如下: 
这里写图片描述

  Data Block段用来保存表中的数据,这部分可以被压缩。 Meta Block段(可选的)用来保存用户自定义的kv段,可以被压缩。 FileInfo段用来保存HFile的元信息,不能被压缩,用户也可以在这一部分添加自己的元信息。 Data Block Index段(可选的)用来保存Meta Blcok的索引。 Trailer这一段是定长的。保存了每一段的偏移量,读取一个HFile时,会首先读取Trailer,Trailer保存了每个段的起始位置(段的Magic Number用来做安全check),然后,DataBlock Index会被读取到内存中,这样,当检索某个key时,不需要扫描整个HFile,而只需从内存中找到key所在的block,通过一次磁盘io将整个 block读取到内存中,再找到需要的key。DataBlock Index采用LRU机制淘汰。 HFile的Data Block,Meta Block通常采用压缩方式存储,压缩之后可以大大减少网络IO和磁盘IO,随之而来的开销当然是需要花费cpu进行压缩和解压缩。(备注: DataBlock Index的缺陷。 a) 占用过多内存 b) 启动加载时间缓慢)

HLog 
  HLog(WAL log):WAL意为write ahead log,用来做灾难恢复使用,HLog记录数据的所有变更,一旦region server 宕机,就可以从log中进行恢复。 
LogFlusher 
  定期的将缓存中信息写入到日志文件中 
LogRoller  
   对日志文件进行管理维护 

阅读全文
'); })();
0 0
原创粉丝点击
热门IT博客
热门问题 老师的惩罚 人脸识别 我在镇武司摸鱼那些年 重生之率土为王 我在大康的咸鱼生活 盘龙之生命进化 天生仙种 凡人之先天五行 春回大明朝 姑娘不必设防,我是瞎子 度亡经 渡人经 萧何 贵州红四渡所有酒价格 红四渡53度酱香型酒价格 红四渡酒53价格表 江西李渡酒价格表 普渡众生是什么意思 福绵十丈村渡假村 广州长隆渡假村酒店 人生几渡作品 功夫医圣人生几渡 超级医王 人生几渡 功夫医圣 人生几渡 左宏元唱渡情时多大 汉庭外白渡桥店 外白渡桥边的海鸥宾馆 渡桑干 桑干 渡汉江古诗原文 渡汉江古诗注音版 渡汉江的译文 渡汉江大意 渡汉江赏析 瓮安渡江君豪大酒店 渡江口腔医院 渡渡鸟图片 渡渡鸟灭绝原因 渡渡鸟灭绝的原因 方舟渡渡鸟怎么下蛋 嘟嘟鸟 度度鸟 渡湘江鉴赏 渡灵师 渡灵师txt下载 渡灵天师 渡灵师全文免费 渡灵人之天师钟馗 渡灵师何菁全文阅读 渡神 渡劫高手在异界 神耳 神级渡鬼系统 落地书童