[总结] C语言的位操作技巧

来源:互联网 发布:mysql如何改root密码 编辑:程序博客网 时间:2024/05/22 11:32

置位
  #define BIT3 (0x1 << 3)
  static int a;
void set_bit3(void)
  {
  a |= BIT3;
  }
void clear_bit3(void)
  {
  a &= ~BIT3;
  }
判断位是否为1 if (a & BIT3)

nt a|=(1<<x) //X就是某位需要置1的数字,如第四位置1为: a|=(1<<4)
int b&=~(1<<x) //把某位置0

x=x|0x0100    //把第三位置1
x=x&0x1011    //把第三位置0
#define BitGet(Number,pos) ((Number) >> (pos)&1)) //用宏得到某数的某位
#define BitSET(Number,pos) ((Number) |= 1<<(pos)) //把某位置1
#define BitCLEAR(Number,pos) ((Number) &= ~(1<<(pos)) //把某位置0
#define BitREV(Number,pos) ((Number) ^= 1<<(pos)) //把Number的POS位取反
 

i = 879 / 16; <=> i = 879 >> 4;
i = 879 % 32; <=> i = 879 - (879>>5<<5); <=> i = 879 & 31;
循环移位区别于一般移位的是移位时没有数位的丢失。循环左移时,用从左边移出的位填充字的右端,而循环右移时,用从右边移出的位填充字的左侧。这种情况在系统程序中时有使用,在一些控制程序中用得也不少。
  设有数据说明:

  a=01111011,循环左移2位 正确结果: 11101101

  过程:

  b=a>>(8-2) 用来得到正常左移丢失的位和循环移位后其正确位置 b=00000001;

  a=a<<2;左移 a=11101100

  a=a|b; a=11101101

  如果不是用中间变量 a=(a>>(8-2))|(a<<2)

  总长度N(8 16 32)

  循环左移n (a>>(N-n))|(a>>n)

  循环右移n (a<<(N-n))|(a>>n)

检测一个无符号数是不为2^n-1(^为幂):   x&(x+1)   
    
  将最右侧0位改为1位:   x   |   (x+1)   
    
  二进制补码运算公式:   
  -x   =   ~x   +   1   =   ~(x-1)   
  ~x   =   -x-1     
  -(~x)   =   x+1   
  ~(-x)   =   x-1   
  x+y   =   x   -   ~y   -   1   =   (x|y)+(x&y)     
  x-y   =   x   +   ~y   +   1   =   (x|~y)-(~x&y)     
  x^y   =   (x|y)-(x&y)   
  x|y   =   (x&~y)+y   
  x&y   =   (~x|y)-~x   
    
  x==y:         ~(x-y|y-x)   
  x!=y:         x-y|y-x   
  x<   y:         (x-y)^((x^y)&((x-y)^x))   
  x<=y:         (x|~y)&((x^y)|~(y-x))   
  x<   y:         (~x&y)|((~x|y)&(x-y))//无符号x,y比较   
  x<=y:         (~x|y)&amp;((x^y)|~(y-x))//无符号x,y比较   
    
    
  使用位运算的无分支代码:   
    
  计算绝对值   
  int   abs(   int   x   )     
  {   
  int   y   ;   
  y   =   x   >>   31   ;   
  return   (x^y)-y   ;//or:   (x+y)^y   
  }   
    
  符号函数:sign(x)   =   -1,   x<0;   0,   x   ==   0   ;   1,   x   &gt;   0   
  int   sign(int   x)   
  {   
  return   (x>>31)   |   (unsigned(-x))>>31   ;//x=-2^31时失败(^为幂)   
  }   
    
  三值比较:cmp(x,y)   =   -1,   x<y;   0,   x==y;   1,   x   >   y   
  int   cmp(   int   x,   int   y   )   
  {   
  return   (x>y)-(x-y)   ;   
  }   
    
  doz=x-y,   x>=y;   0,   x<y   
  int   doz(int   x,   int   y   )   
  {   
  int   d   ;   
  d   =   x-y   ;   
  return   d   &   ((~(d^((x^y)&(d^x))))>>31)   ;   
  }   
    
  int   max(int   x,   int   y   )     
  {   
  int   m   ;   
  m   =   (x-y)>>31   ;     
  return   y   &   m   |   x   &   ~m   ;   
  }   
    
  不使用第三方交换x,y:   
  1.x   ^=   y   ;   y   ^=   x   ;   x   ^=   y   ;   
  2.x   =   x+y   ;   y   =   x-y   ;   x   =   x-y   ;   
  3.x   =   x-y   ;   y   =   y+x   ;   x   =   y-x   ;   
  4.x   =   y-x   ;   x   =   y-x   ;   x   =   x+y   ;     
    
  双值交换:x   =   a,   x==b;   b,   x==a//常规编码为x   =   x==a   ?   b   :a   ;   
  1.x   =   a+b-x   ;   
  2.x   =   a^b^x   ;   
    
  下舍入到2的k次方的倍数:   
  1.x   &   ((-1)<<k)   
  2.(((unsigned)x)>>k)<<k   
  上舍入:   
  1.   t   =   (1<<k)-1   ;   x   =   (x+t)&~t   ;   
  2.t   =   (-1)<<k   ;   x   =   (x-t-1)&t   ;   
    
  位计数,统计1位的数量:   
  1.   
  int   pop(unsigned   x)   
  {   
  x   =   x-((x>>1)&0x55555555)   ;   
  x   =   (x&0x33333333)   +   ((x>>2)   &   0x33333333   )   ;   
  x   =   (x+(x>>4))   &   0x0f0f0f0f   ;   
  x   =   x   +   (x>>8)   ;   
  x   =   x   +   (x>>16)   ;   
  return   x   &   0x0000003f   ;   
  }   
  2.   
  int   pop(unsigned   x)   {   
  static   char   table[256]   =   {   0,1,1,2,   1,2,2,3,   ....,   6,7,7,8   }   ;   
  return   table[x&0xff]+table[(x>>8)&0xff]+table[(x>>16)&0xff]+table[(x>>24)]   ;   
  }   
    
  奇偶性计算:   
  x   =   x   ^   (   x>>1   )   ;   
  x   =   x   ^   (   x>>2   )   ;   
  x   =   x   ^   (   x>>4   )   ;   
  x   =   x   ^   (   x>>8   )   ;   
  x   =   x   ^   (   x>>16   )   ;   
  结果中位于x最低位,对无符号x,结果的第i位是原数第i位到最左侧位的奇偶性   
    
    
  位反转:   
  unsigned   rev(unsigned   x)   
  {   
  x   =   (x   &   0x55555555)   <<   1   |   (x>>1)   &   0x55555555   ;   
  x   =   (x   &   0x33333333)   <<   2   |   (x>>2)   &   0x33333333   ;   
  x   =   (x   &   0x0f0f0f0f)   <<   4   |   (x>>4)   &   0x0f0f0f0f   ;   
  x   =   (x<<24)   |   ((x&0xff00)<<8)   |   ((x>>8)   &   0xff00)   |   (x>>24)   ;   
  return   x   ;   
  }   
    
  递增位反转后的数:   
  unsigned   inc_r(unsigned   x)   
  {   
  unsigned   m   =   0x80000000   ;   
  x   ^=   m   ;   
  if(   (int)x   >=   0   )     
  do   {   m   >>=   1   ;   x   ^=   m   ;   }   while(   x   <   m   )   ;   
  return   x   ;   
  }   
    
  混选位:   
  abcd   efgh   ijkl   mnop   ABCD   EFGH   IJKL   MNOP->aAbB   cCdD   eEfF   gGhH   iIjJ   kKlL   mMnN   oOpP   
  unsigned   ps(unsigned   x)   
  {   
  unsigned   t   ;   
  t   =   (x   ^   (x>>8))   &   0x0000ff00;   x   =   x   ^   t   ^   (t<<8)   ;   
  t   =   (x   ^   (x>>4))   &   0x00f000f0;   x   =   x   ^   t   ^   (t<<4)   ;   
  t   =   (x   ^   (x>>2))   &   0x0c0c0c0c;   x   =   x   ^   t   ^   (t<<2)   ;   
  t   =   (x   ^   (x>>1))   &   0x22222222;   x   =   x   ^   t   ^   (t<<1)   ;   
  return   x   ;   
  }   
    
  位压缩:   
  选择并右移字x中对应于掩码m的1位的位,如:compress(abcdefgh,01010101)=0000bdfh   
  compress_left(x,m)操作与此类似,但结果位在左边:   bdfh0000.   
  unsigned   compress(unsigned   x,   unsigned   m)   
  {   
  unsigned   mk,   mp,   mv,   t   ;   
  int   i   ;   
    
  x   &=   m   ;   
  mk   =   ~m   <<   1   ;   
  for(   i   =   0   ;   i   <   5   ;   ++i   )   {   
  mp   =   mk   ^   (   mk   <<   1)   ;   
  mp   ^=   (   mp   <<   2   )   ;   
  mp   ^=   (   mp   <<   4   )   ;   
  mp   ^=   (   mp   <<   8   )   ;   
  mp   ^=   (   mp   <<   16   )   ;   
  mv   =   mp   &   m   ;   
  m   =   m   ^   mv   |   (mv   >>   (1<<i)   )   ;   
  t   =   x   &   mv   ;   
  x     =   x   ^   t   |   (   t   >>   (   1<<i)   )   ;   
  mk   =   mk   &   ~mp   ;   
  }   
  return   x   ;   
  }   
    
    
  位置换:   
  用32个5位数表示从最低位开始的位的目标位置,结果是一个32*5的位矩阵,   
  将该矩阵沿次对角线转置后用5个32位字p[5]存放。   
  SAG(x,m)   =   compress_left(x,m)   |   compress(x,~m)   ;   
  准备工作:   
  void   init(   unsigned   *p   )   {   
  p[1]   =   SAG(   p[1],   p[0]   )   ;   
  p[2]   =   SAG(   SAG(   p[2],   p[0]),   p[1]   )   ;   
  p[3]   =   SAG(   SAG(   SAG(   p[3],   p[0]   ),   p[1]),   p[2]   )   ;   
  p[4]   =   SAG(   SAG(   SAG(   SAG(   p[4],   p[0]   ),   p[1])   ,p[2]),   p[3]   )   ;   
  }   
  实际置换:   
  int   rep(   unsigned   x   )   {   
  x   =   SAG(x,p[0]);   
  x   =   SAG(x,p[1]);   
  x   =   SAG(x,p[2]);   
  x   =   SAG(x,p[3]);   
  x   =   SAG(x,p[4]);   
  return   x   ;   
  }   
    
  二进制码到GRAY码的转换:   
  unsigned   B2G(unsigned   B   )   
  {   
  return   B   ^   (B>>1)   ;   
  }   
  GRAY码到二进制码:   
  unsigned   G2B(unsigned   G)   
  {   
  unsigned   B   ;   
  B   =   G   ^   (G>>1)   ;   
  B   =   G   ^   (G>>2)   ;   
  B   =   G   ^   (G>>4)   ;   
  B   =   G   ^   (G>>8)   ;   
  B   =   G   ^   (G>>16)   ;   
  return   B   ;   
  }   
    
  找出最左0字节的位置:   
  int   zbytel(   unsigned   x   )   
  {   
  static   cahr   table[16]   =   {   4,3,2,2,   1,1,1,1,   0,0,0,0,   0,0,0,0   }   ;   
  unsigned   y   ;   
  y   =   (x&0x7f7f7f7f)   +   0x7f7f7f7f   ;   
  y   =   ~(y|x|0x7f7f7f7f)   ;   
  return   table[y*0x00204081   >>   28]   ;//乘法可用移位和加完成   
  }