stl 分析之 stl_tree.h

来源:互联网 发布:dnf年度数据大回顾 编辑:程序博客网 时间:2024/05/02 08:12

 

/*

 *

 * Copyright (c) 1996,1997

 * Silicon Graphics Computer Systems, Inc.

 *

 * Permission to use, copy, modify, distribute and sell this software

 * and its documentation for any purpose is hereby granted without fee,

 * provided that the above copyright notice appear in all copies and

 * that both that copyright notice and this permission notice appear

 * in supporting documentation.  Silicon Graphics makes no

 * representations about the suitability of this software for any

 * purpose.  It is provided "as is" without express or implied warranty.

 *

 *

 * Copyright (c) 1994

 * Hewlett-Packard Company

 *

 * Permission to use, copy, modify, distribute and sell this software

 * and its documentation for any purpose is hereby granted without fee,

 * provided that the above copyright notice appear in all copies and

 * that both that copyright notice and this permission notice appear

 * in supporting documentation.  Hewlett-Packard Company makes no

 * representations about the suitability of this software for any

 * purpose.  It is provided "as is" without express or implied warranty.

 *

 *

 */

 

/* NOTE: This is an internal header file, included by other STL headers.

 *   You should not attempt to use it directly.

 */

 

#ifndef __SGI_STL_INTERNAL_TREE_H

#define __SGI_STL_INTERNAL_TREE_H

 

/*

 

Red-black tree class, designed for use in implementing STL

associative containers (set, multiset, map, and multimap). The

insertion and deletion algorithms are based on those in Cormen,

Leiserson, and Rivest, Introduction to Algorithms (MIT Press, 1990),

except that

 

(1) the header cell is maintained with links not only to the root

but also to the leftmost node of the tree, to enable constant time

begin(), and to the rightmost node of the tree, to enable linear time

performance when used with the generic set algorithms (set_union,

etc.);

 

(2) when a node being deleted has two children its successor node is

relinked into its place, rather than copied, so that the only

iterators invalidated are those referring to the deleted node.

 

*/

 

#include <stl_algobase.h>

#include <stl_alloc.h>

#include <stl_construct.h>

#include <stl_function.h>

 

__STL_BEGIN_NAMESPACE 

 

typedef bool __rb_tree_color_type;

const __rb_tree_color_type __rb_tree_red = false;

const __rb_tree_color_type __rb_tree_black = true;

 

struct __rb_tree_node_base

{

  typedef __rb_tree_color_type color_type;

  typedef __rb_tree_node_base* base_ptr;

 

  color_type color; 

  base_ptr parent;

  base_ptr left;

  base_ptr right;

 

  static base_ptr minimum(base_ptr x)

  {

    while (x->left != 0) x = x->left;

    return x;

  }

 

  static base_ptr maximum(base_ptr x)

  {

    while (x->right != 0) x = x->right;

    return x;

  }

};

 

template <class Value>

struct __rb_tree_node : public __rb_tree_node_base

{

  typedef __rb_tree_node<Value>* link_type;

  Value value_field;

};

 

//这里面只定义了一个node

//这个节点的类型为base_ptr(__rb_tree_node_base::base_ptr为__rb_tree_node_base里面的成员)

//实际上就是__rb_tree_node_base*

struct __rb_tree_base_iterator

{

  typedef __rb_tree_node_base::base_ptr base_ptr;

  typedef bidirectional_iterator_tag iterator_category;

  typedef ptrdiff_t difference_type;

  base_ptr node;

 

//返回下一个节点(该节点是红黑树中比当前节点大的第一个节点)

  void increment()

  {

  //有右孩子

    if (node->right != 0) {

      node = node->right;

      //找最左边的左孩子

      while (node->left != 0)

        node = node->left;

    }

    else { //右孩子为空

      base_ptr y = node->parent;

      while (node == y->right) {

        node = y;

        y = y->parent;

      }

      if (node->right != y)

        node = y;

    }

  }

 

  void decrement()

  {

    if (node->color == __rb_tree_red &&

        node->parent->parent == node)

      node = node->right;

    else if (node->left != 0) {

      base_ptr y = node->left;

      while (y->right != 0)

        y = y->right;

      node = y;

    }

    else {

      base_ptr y = node->parent;

      while (node == y->left) {

        node = y;

        y = y->parent;

      }

      node = y;

    }

  }

};

 

template <class Value, class Ref, class Ptr>

struct __rb_tree_iterator : public __rb_tree_base_iterator

{

  typedef Value value_type;

  typedef Ref reference;

  typedef Ptr pointer;

  typedef __rb_tree_iterator<Value, Value&, Value*>             iterator;

  typedef __rb_tree_iterator<Value, const Value&, const Value*> const_iterator;

  typedef __rb_tree_iterator<Value, Ref, Ptr>                   self;

  typedef __rb_tree_node<Value>* link_type;

 

  __rb_tree_iterator() {}

  __rb_tree_iterator(link_type x) { node = x; }

  __rb_tree_iterator(const iterator& it) { node = it.node; }

 

  reference operator*() const { return link_type(node)->value_field; }

#ifndef __SGI_STL_NO_ARROW_OPERATOR

  pointer operator->() const { return &(operator*()); }

#endif /* __SGI_STL_NO_ARROW_OPERATOR */

 

  self& operator++() { increment(); return *this; }

  self operator++(int) {

    self tmp = *this;

    increment();

    return tmp;

  }

 

  self& operator--() { decrement(); return *this; }

  self operator--(int) {

    self tmp = *this;

    decrement();

    return tmp;

  }

};

 

inline bool operator==(const __rb_tree_base_iterator& x,

                       const __rb_tree_base_iterator& y) {

  return x.node == y.node;

}

 

inline bool operator!=(const __rb_tree_base_iterator& x,

                       const __rb_tree_base_iterator& y) {

  return x.node != y.node;

}

 

#ifndef __STL_CLASS_PARTIAL_SPECIALIZATION

 

inline bidirectional_iterator_tag

iterator_category(const __rb_tree_base_iterator&) {

  return bidirectional_iterator_tag();

}

 

inline __rb_tree_base_iterator::difference_type*

distance_type(const __rb_tree_base_iterator&) {

  return (__rb_tree_base_iterator::difference_type*) 0;

}

 

template <class Value, class Ref, class Ptr>

inline Value* value_type(const __rb_tree_iterator<Value, Ref, Ptr>&) {

  return (Value*) 0;

}

 

#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */

 

//向左旋转

//注意的一点是:有个父亲节点需要设置

inline void 

__rb_tree_rotate_left(__rb_tree_node_base* x, __rb_tree_node_base*& root)

{

  __rb_tree_node_base* y = x->right;

  x->right = y->left;

  if (y->left !=0)

    y->left->parent = x;

  y->parent = x->parent;

 

  if (x == root) //如果x自己本身是root节点,那么现在的root节点应该变成y(x的右孩子了)

    root = y;

  else if (x == x->parent->left) //如果x自己是(自己父亲的)左孩子,那么现在他父亲的左孩子应该是y了

    x->parent->left = y;

  else //如果x自己是右孩子,那么现在他父亲的右孩子应该是y

    x->parent->right = y;

  y->left = x; //让x的右孩子占了x的位置。

  x->parent = y;

}

 

inline void 

__rb_tree_rotate_right(__rb_tree_node_base* x, __rb_tree_node_base*& root)

{

  __rb_tree_node_base* y = x->left;

  x->left = y->right;

  if (y->right != 0)

    y->right->parent = x;

  y->parent = x->parent;

 

  if (x == root)

    root = y;

  else if (x == x->parent->right)

    x->parent->right = y;

  else

    x->parent->left = y;

  y->right = x;

  x->parent = y;

}

 

inline void 

__rb_tree_rebalance(__rb_tree_node_base* x, __rb_tree_node_base*& root)

{

  x->color = __rb_tree_red;

  while (x != root && x->parent->color == __rb_tree_red) {

    if (x->parent == x->parent->parent->left) {

      __rb_tree_node_base* y = x->parent->parent->right;

      if (y && y->color == __rb_tree_red) {

        x->parent->color = __rb_tree_black;

        y->color = __rb_tree_black;

        x->parent->parent->color = __rb_tree_red;

        x = x->parent->parent;

      }

      else {

        if (x == x->parent->right) {

          x = x->parent;

          __rb_tree_rotate_left(x, root);

        }

        x->parent->color = __rb_tree_black;

        x->parent->parent->color = __rb_tree_red;

        __rb_tree_rotate_right(x->parent->parent, root);

      }

    }

    else {

      __rb_tree_node_base* y = x->parent->parent->left;

      if (y && y->color == __rb_tree_red) {

        x->parent->color = __rb_tree_black;

        y->color = __rb_tree_black;

        x->parent->parent->color = __rb_tree_red;

        x = x->parent->parent;

      }

      else {

        if (x == x->parent->left) {

          x = x->parent;

          __rb_tree_rotate_right(x, root);

        }

        x->parent->color = __rb_tree_black;

        x->parent->parent->color = __rb_tree_red;

        __rb_tree_rotate_left(x->parent->parent, root);

      }

    }

  }

  root->color = __rb_tree_black;

}

 

inline __rb_tree_node_base*

__rb_tree_rebalance_for_erase(__rb_tree_node_base* z,

                              __rb_tree_node_base*& root,

                              __rb_tree_node_base*& leftmost,

                              __rb_tree_node_base*& rightmost)

{

  __rb_tree_node_base* y = z;

  __rb_tree_node_base* x = 0;

  __rb_tree_node_base* x_parent = 0;

  if (y->left == 0)             // z has at most one non-null child. y == z.

    x = y->right;               // x might be null.

  else

    if (y->right == 0)          // z has exactly one non-null child.  y == z.

      x = y->left;              // x is not null.

    else {                      // z has two non-null children.  Set y to

      y = y->right;             //   z's successor.  x might be null.

      while (y->left != 0)

        y = y->left;

      x = y->right;

    }

  if (y != z) {                 // relink y in place of z.  y is z's successor

    z->left->parent = y; 

    y->left = z->left;

    if (y != z->right) {

      x_parent = y->parent;

      if (x) x->parent = y->parent;

      y->parent->left = x;      // y must be a left child

      y->right = z->right;

      z->right->parent = y;

    }

    else

      x_parent = y;  

    if (root == z)

      root = y;

    else if (z->parent->left == z)

      z->parent->left = y;

    else 

      z->parent->right = y;

    y->parent = z->parent;

    __STD::swap(y->color, z->color);

    y = z;

    // y now points to node to be actually deleted

  }

  else {                        // y == z

    x_parent = y->parent;

    if (x) x->parent = y->parent;   

    if (root == z)

      root = x;

    else 

      if (z->parent->left == z)

        z->parent->left = x;

      else

        z->parent->right = x;

    if (leftmost == z) 

      if (z->right == 0)        // z->left must be null also

        leftmost = z->parent;

    // makes leftmost == header if z == root

      else

        leftmost = __rb_tree_node_base::minimum(x);

    if (rightmost == z)  

      if (z->left == 0)         // z->right must be null also

        rightmost = z->parent;  

    // makes rightmost == header if z == root

      else                      // x == z->left

        rightmost = __rb_tree_node_base::maximum(x);

  }

  if (y->color != __rb_tree_red) { 

    while (x != root && (x == 0 || x->color == __rb_tree_black))

      if (x == x_parent->left) {

        __rb_tree_node_base* w = x_parent->right;

        if (w->color == __rb_tree_red) {

          w->color = __rb_tree_black;

          x_parent->color = __rb_tree_red;

          __rb_tree_rotate_left(x_parent, root);

          w = x_parent->right;

        }

        if ((w->left == 0 || w->left->color == __rb_tree_black) &&

            (w->right == 0 || w->right->color == __rb_tree_black)) {

          w->color = __rb_tree_red;

          x = x_parent;

          x_parent = x_parent->parent;

        } else {

          if (w->right == 0 || w->right->color == __rb_tree_black) {

            if (w->left) w->left->color = __rb_tree_black;

            w->color = __rb_tree_red;

            __rb_tree_rotate_right(w, root);

            w = x_parent->right;

          }

          w->color = x_parent->color;

          x_parent->color = __rb_tree_black;

          if (w->right) w->right->color = __rb_tree_black;

          __rb_tree_rotate_left(x_parent, root);

          break;

        }

      } else {                  // same as above, with right <-> left.

        __rb_tree_node_base* w = x_parent->left;

        if (w->color == __rb_tree_red) {

          w->color = __rb_tree_black;

          x_parent->color = __rb_tree_red;

          __rb_tree_rotate_right(x_parent, root);

          w = x_parent->left;

        }

        if ((w->right == 0 || w->right->color == __rb_tree_black) &&

            (w->left == 0 || w->left->color == __rb_tree_black)) {

          w->color = __rb_tree_red;

          x = x_parent;

          x_parent = x_parent->parent;

        } else {

          if (w->left == 0 || w->left->color == __rb_tree_black) {

            if (w->right) w->right->color = __rb_tree_black;

            w->color = __rb_tree_red;

            __rb_tree_rotate_left(w, root);

            w = x_parent->left;

          }

          w->color = x_parent->color;

          x_parent->color = __rb_tree_black;

          if (w->left) w->left->color = __rb_tree_black;

          __rb_tree_rotate_right(x_parent, root);

          break;

        }

      }

    if (x) x->color = __rb_tree_black;

  }

  return y;

}

 

template <class Key, class Value, class KeyOfValue, class Compare,

          class Alloc = alloc>

class rb_tree {

protected:

  typedef void* void_pointer;

  typedef __rb_tree_node_base* base_ptr;

  typedef __rb_tree_node<Value> rb_tree_node;

  typedef simple_alloc<rb_tree_node, Alloc> rb_tree_node_allocator;

  typedef __rb_tree_color_type color_type;

public:

  typedef Key key_type;

  typedef Value value_type;

  typedef value_type* pointer;

  typedef const value_type* const_pointer;

  typedef value_type& reference;

  typedef const value_type& const_reference;

  typedef rb_tree_node* link_type;

  typedef size_t size_type;

  typedef ptrdiff_t difference_type;

protected:

  link_type get_node() { return rb_tree_node_allocator::allocate(); }

  void put_node(link_type p) { rb_tree_node_allocator::deallocate(p); }

 

  link_type create_node(const value_type& x) {

    link_type tmp = get_node();

    __STL_TRY {

      construct(&tmp->value_field, x);

    }

    __STL_UNWIND(put_node(tmp));

    return tmp;

  }

 

  link_type clone_node(link_type x) {

    link_type tmp = create_node(x->value_field);

    tmp->color = x->color;

    tmp->left = 0;

    tmp->right = 0;

    return tmp;

  }

 

  void destroy_node(link_type p) {

    destroy(&p->value_field);

    put_node(p);

  }

 

protected:

  size_type node_count; // keeps track of size of tree

  link_type header;  

  Compare key_compare;

 

  link_type& root() const { return (link_type&) header->parent; }

  link_type& leftmost() const { return (link_type&) header->left; }

  link_type& rightmost() const { return (link_type&) header->right; }

 

  static link_type& left(link_type x) { return (link_type&)(x->left); }

  static link_type& right(link_type x) { return (link_type&)(x->right); }

  static link_type& parent(link_type x) { return (link_type&)(x->parent); }

  static reference value(link_type x) { return x->value_field; }

  static const Key& key(link_type x) { return KeyOfValue()(value(x)); }

  static color_type& color(link_type x) { return (color_type&)(x->color); }

 

  static link_type& left(base_ptr x) { return (link_type&)(x->left); }

  static link_type& right(base_ptr x) { return (link_type&)(x->right); }

  static link_type& parent(base_ptr x) { return (link_type&)(x->parent); }

  static reference value(base_ptr x) { return ((link_type)x)->value_field; }

  static const Key& key(base_ptr x) { return KeyOfValue()(value(link_type(x)));} 

  static color_type& color(base_ptr x) { return (color_type&)(link_type(x)->color); }

 

  static link_type minimum(link_type x) { 

    return (link_type)  __rb_tree_node_base::minimum(x);

  }

  static link_type maximum(link_type x) {

    return (link_type) __rb_tree_node_base::maximum(x);

  }

 

public:

  typedef __rb_tree_iterator<value_type, reference, pointer> iterator;

  typedef __rb_tree_iterator<value_type, const_reference, const_pointer> 

          const_iterator;

 

#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION

  typedef reverse_iterator<const_iterator> const_reverse_iterator;

  typedef reverse_iterator<iterator> reverse_iterator;

#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */

  typedef reverse_bidirectional_iterator<iterator, value_type, reference,

                                         difference_type>

          reverse_iterator; 

  typedef reverse_bidirectional_iterator<const_iterator, value_type,

                                         const_reference, difference_type>

          const_reverse_iterator;

#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ 

private:

  iterator __insert(base_ptr x, base_ptr y, const value_type& v);

  link_type __copy(link_type x, link_type p);

  void __erase(link_type x);

  void init() {

    header = get_node();

    color(header) = __rb_tree_red; // used to distinguish header from 

                                   // root, in iterator.operator++

    root() = 0;

    leftmost() = header;

    rightmost() = header;

  }

public:

                                // allocation/deallocation

  rb_tree(const Compare& comp = Compare())

    : node_count(0), key_compare(comp) { init(); }

 

  rb_tree(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x) 

    : node_count(0), key_compare(x.key_compare)

  { 

    header = get_node();

    color(header) = __rb_tree_red;

    if (x.root() == 0) {

      root() = 0;

      leftmost() = header;

      rightmost() = header;

    }

    else {

      __STL_TRY {

        root() = __copy(x.root(), header);

      }

      __STL_UNWIND(put_node(header));

      leftmost() = minimum(root());

      rightmost() = maximum(root());

    }

    node_count = x.node_count;

  }

  ~rb_tree() {

    clear();

    put_node(header);

  }

  rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& 

  operator=(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x);

 

public:    

                                // accessors:

  Compare key_comp() const { return key_compare; }

  iterator begin() { return leftmost(); }

  const_iterator begin() const { return leftmost(); }

  iterator end() { return header; }

  const_iterator end() const { return header; }

  reverse_iterator rbegin() { return reverse_iterator(end()); }

  const_reverse_iterator rbegin() const { 

    return const_reverse_iterator(end()); 

  }

  reverse_iterator rend() { return reverse_iterator(begin()); }

  const_reverse_iterator rend() const { 

    return const_reverse_iterator(begin());

  } 

  bool empty() const { return node_count == 0; }

  size_type size() const { return node_count; }

  size_type max_size() const { return size_type(-1); }

 

  void swap(rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& t) {

    __STD::swap(header, t.header);

    __STD::swap(node_count, t.node_count);

    __STD::swap(key_compare, t.key_compare);

  }

 

public:

                                // insert/erase

  pair<iterator,bool> insert_unique(const value_type& x);

  iterator insert_equal(const value_type& x);

 

  iterator insert_unique(iterator position, const value_type& x);

  iterator insert_equal(iterator position, const value_type& x);

 

#ifdef __STL_MEMBER_TEMPLATES  

  template <class InputIterator>

  void insert_unique(InputIterator first, InputIterator last);

  template <class InputIterator>

  void insert_equal(InputIterator first, InputIterator last);

#else /* __STL_MEMBER_TEMPLATES */

  void insert_unique(const_iterator first, const_iterator last);

  void insert_unique(const value_type* first, const value_type* last);

  void insert_equal(const_iterator first, const_iterator last);

  void insert_equal(const value_type* first, const value_type* last);

#endif /* __STL_MEMBER_TEMPLATES */

 

  void erase(iterator position);

  size_type erase(const key_type& x);

  void erase(iterator first, iterator last);

  void erase(const key_type* first, const key_type* last);

  void clear() {

    if (node_count != 0) {

      __erase(root());

      leftmost() = header;

      root() = 0;

      rightmost() = header;

      node_count = 0;

    }

  }      

 

public:

                                // set operations:

  iterator find(const key_type& x);

  const_iterator find(const key_type& x) const;

  size_type count(const key_type& x) const;

  iterator lower_bound(const key_type& x);

  const_iterator lower_bound(const key_type& x) const;

  iterator upper_bound(const key_type& x);

  const_iterator upper_bound(const key_type& x) const;

  pair<iterator,iterator> equal_range(const key_type& x);

  pair<const_iterator, const_iterator> equal_range(const key_type& x) const;

 

public:

                                // Debugging.

  bool __rb_verify() const;

};

 

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>

inline bool operator==(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x, 

                       const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) {

  return x.size() == y.size() && equal(x.begin(), x.end(), y.begin());

}

 

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>

inline bool operator<(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x, 

                      const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) {

  return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());

}

 

#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER

 

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>

inline void swap(rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x, 

                 rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) {

  x.swap(y);

}

 

#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */

 

 

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>

rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& 

rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::

operator=(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x) {

  if (this != &x) {

                                // Note that Key may be a constant type.

    clear();

    node_count = 0;

    key_compare = x.key_compare;        

    if (x.root() == 0) {

      root() = 0;

      leftmost() = header;

      rightmost() = header;

    }

    else {

      root() = __copy(x.root(), header);

      leftmost() = minimum(root());

      rightmost() = maximum(root());

      node_count = x.node_count;

    }

  }

  return *this;

}

 

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>

typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator

rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::

__insert(base_ptr x_, base_ptr y_, const Value& v) {

  link_type x = (link_type) x_;

  link_type y = (link_type) y_;

  link_type z;

 

  if (y == header || x != 0 || key_compare(KeyOfValue()(v), key(y))) {

    z = create_node(v);

    left(y) = z;                // also makes leftmost() = z when y == header

    if (y == header) {

      root() = z;

      rightmost() = z;

    }

    else if (y == leftmost())

      leftmost() = z;           // maintain leftmost() pointing to min node

  }

  else {

    z = create_node(v);

    right(y) = z;

    if (y == rightmost())

      rightmost() = z;          // maintain rightmost() pointing to max node

  }

  parent(z) = y;

  left(z) = 0;

  right(z) = 0;

  __rb_tree_rebalance(z, header->parent);

  ++node_count;

  return iterator(z);

}

 

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>

typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator

rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::insert_equal(const Value& v)

{

//插入的值可能重复

  link_type y = header;

  link_type x = root();

  while (x != 0) {

    y = x;

    x = key_compare(KeyOfValue()(v), key(x)) ? left(x) : right(x);

  }

  return __insert(x, y, v);

}

 

 

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>

pair<typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator, bool>

rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::insert_unique(const Value& v)

{

  link_type y = header;

  link_type x = root();

  bool comp = true;

  while (x != 0) {

    y = x;

    comp = key_compare(KeyOfValue()(v), key(x));

    x = comp ? left(x) : right(x);

  }

  iterator j = iterator(y);   

  if (comp)

    if (j == begin())     

      return pair<iterator,bool>(__insert(x, y, v), true);

    else

      --j;

  if (key_compare(key(j.node), KeyOfValue()(v)))

    return pair<iterator,bool>(__insert(x, y, v), true);

  return pair<iterator,bool>(j, false);

}

 

 

template <class Key, class Val, class KeyOfValue, class Compare, class Alloc>

typename rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::iterator 

rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::insert_unique(iterator position,

                                                             const Val& v) {

  if (position.node == header->left) // begin()

    if (size() > 0 && key_compare(KeyOfValue()(v), key(position.node)))

      return __insert(position.node, position.node, v);

  // first argument just needs to be non-null 

    else

      return insert_unique(v).first;

  else if (position.node == header) // end()

    if (key_compare(key(rightmost()), KeyOfValue()(v)))

      return __insert(0, rightmost(), v);

    else

      return insert_unique(v).first;

  else {

    iterator before = position;

    --before;

    if (key_compare(key(before.node), KeyOfValue()(v))

        && key_compare(KeyOfValue()(v), key(position.node)))

      if (right(before.node) == 0)

        return __insert(0, before.node, v); 

      else

        return __insert(position.node, position.node, v);

    // first argument just needs to be non-null 

    else

      return insert_unique(v).first;

  }

}

 

template <class Key, class Val, class KeyOfValue, class Compare, class Alloc>

typename rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::iterator 

rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::insert_equal(iterator position,

                                                            const Val& v) {

  if (position.node == header->left) // begin()

    if (size() > 0 && key_compare(KeyOfValue()(v), key(position.node)))

      return __insert(position.node, position.node, v);

  // first argument just needs to be non-null 

    else

      return insert_equal(v);

  else if (position.node == header) // end()

    if (!key_compare(KeyOfValue()(v), key(rightmost())))

      return __insert(0, rightmost(), v);

    else

      return insert_equal(v);

  else {

    iterator before = position;

    --before;

    if (!key_compare(KeyOfValue()(v), key(before.node))

        && !key_compare(key(position.node), KeyOfValue()(v)))

      if (right(before.node) == 0)

        return __insert(0, before.node, v); 

      else

        return __insert(position.node, position.node, v);

    // first argument just needs to be non-null 

    else

      return insert_equal(v);

  }

}

 

#ifdef __STL_MEMBER_TEMPLATES  

 

template <class K, class V, class KoV, class Cmp, class Al> template<class II>

void rb_tree<K, V, KoV, Cmp, Al>::insert_equal(II first, II last) {

  for ( ; first != last; ++first)

    insert_equal(*first);

}

 

template <class K, class V, class KoV, class Cmp, class Al> template<class II>

void rb_tree<K, V, KoV, Cmp, Al>::insert_unique(II first, II last) {

  for ( ; first != last; ++first)

    insert_unique(*first);

}

 

#else /* __STL_MEMBER_TEMPLATES */

 

template <class K, class V, class KoV, class Cmp, class Al>

void

rb_tree<K, V, KoV, Cmp, Al>::insert_equal(const V* first, const V* last) {

  for ( ; first != last; ++first)

    insert_equal(*first);

}

 

template <class K, class V, class KoV, class Cmp, class Al>

void

rb_tree<K, V, KoV, Cmp, Al>::insert_equal(const_iterator first,

                                          const_iterator last) {

  for ( ; first != last; ++first)

    insert_equal(*first);

}

 

template <class K, class V, class KoV, class Cmp, class A>

void 

rb_tree<K, V, KoV, Cmp, A>::insert_unique(const V* first, const V* last) {

  for ( ; first != last; ++first)

    insert_unique(*first);

}

 

template <class K, class V, class KoV, class Cmp, class A>

void 

rb_tree<K, V, KoV, Cmp, A>::insert_unique(const_iterator first,

                                          const_iterator last) {

  for ( ; first != last; ++first)

    insert_unique(*first);

}

 

#endif /* __STL_MEMBER_TEMPLATES */

 

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>

inline void

rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(iterator position) {

  link_type y = (link_type) __rb_tree_rebalance_for_erase(position.node,

                                                          header->parent,

                                                          header->left,

                                                          header->right);

  destroy_node(y);

  --node_count;

}

 

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>

typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::size_type 

rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(const Key& x) {

  pair<iterator,iterator> p = equal_range(x);

  size_type n = 0;

  distance(p.first, p.second, n);

  erase(p.first, p.second);

  return n;

}

 

template <class K, class V, class KeyOfValue, class Compare, class Alloc>

typename rb_tree<K, V, KeyOfValue, Compare, Alloc>::link_type 

rb_tree<K, V, KeyOfValue, Compare, Alloc>::__copy(link_type x, link_type p) {

                                // structural copy.  x and p must be non-null.

  link_type top = clone_node(x);

  top->parent = p;

 

  __STL_TRY {

    if (x->right)

      top->right = __copy(right(x), top);

    p = top;

    x = left(x);

 

    while (x != 0) {

      link_type y = clone_node(x);

      p->left = y;

      y->parent = p;

      if (x->right)

        y->right = __copy(right(x), y);

      p = y;

      x = left(x);

    }

  }

  __STL_UNWIND(__erase(top));

 

  return top;

}

 

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>

void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::__erase(link_type x) {

                                // erase without rebalancing

  while (x != 0) {

    __erase(right(x));

    link_type y = left(x);

    destroy_node(x);

    x = y;

  }

}

 

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>

void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(iterator first, 

                                                            iterator last) {

  if (first == begin() && last == end())

    clear();

  else

    while (first != last) erase(first++);

}

 

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>

void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(const Key* first, 

                                                            const Key* last) {

  while (first != last) erase(*first++);

}

 

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>

typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator 

rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::find(const Key& k) {

  link_type y = header;        // Last node which is not less than k. 

  link_type x = root();        // Current node. 

 

  while (x != 0) 

    if (!key_compare(key(x), k))

      y = x, x = left(x);

    else

      x = right(x);

 

  iterator j = iterator(y);   

  return (j == end() || key_compare(k, key(j.node))) ? end() : j;

}

 

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>

typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator 

rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::find(const Key& k) const {

  link_type y = header; /* Last node which is not less than k. */

  link_type x = root(); /* Current node. */

 

  while (x != 0) {

    if (!key_compare(key(x), k))

      y = x, x = left(x);

    else

      x = right(x);

  }

  const_iterator j = const_iterator(y);   

  return (j == end() || key_compare(k, key(j.node))) ? end() : j;

}

 

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>

typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::size_type 

rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::count(const Key& k) const {

  pair<const_iterator, const_iterator> p = equal_range(k);

  size_type n = 0;

  distance(p.first, p.second, n);

  return n;

}

 

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>

typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator 

rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::lower_bound(const Key& k) {

  link_type y = header; /* Last node which is not less than k. */

  link_type x = root(); /* Current node. */

 

  while (x != 0) 

    if (!key_compare(key(x), k))

      y = x, x = left(x);

    else

      x = right(x);

 

  return iterator(y);

}

 

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>

typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator 

rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::lower_bound(const Key& k) const {

  link_type y = header; /* Last node which is not less than k. */

  link_type x = root(); /* Current node. */

 

  while (x != 0) 

    if (!key_compare(key(x), k))

      y = x, x = left(x);

    else

      x = right(x);

 

  return const_iterator(y);

}

 

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>

typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator 

rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::upper_bound(const Key& k) {

  link_type y = header; /* Last node which is greater than k. */

  link_type x = root(); /* Current node. */

 

   while (x != 0) 

     if (key_compare(k, key(x)))

       y = x, x = left(x);

     else

       x = right(x);

 

   return iterator(y);

}

 

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>

typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator 

rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::upper_bound(const Key& k) const {

  link_type y = header; /* Last node which is greater than k. */

  link_type x = root(); /* Current node. */

 

   while (x != 0) 

     if (key_compare(k, key(x)))

       y = x, x = left(x);

     else

       x = right(x);

 

   return const_iterator(y);

}

 

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>

inline pair<typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator,

            typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator>

rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::equal_range(const Key& k) {

  return pair<iterator, iterator>(lower_bound(k), upper_bound(k));

}

 

template <class Key, class Value, class KoV, class Compare, class Alloc>

inline pair<typename rb_tree<Key, Value, KoV, Compare, Alloc>::const_iterator,

            typename rb_tree<Key, Value, KoV, Compare, Alloc>::const_iterator>

rb_tree<Key, Value, KoV, Compare, Alloc>::equal_range(const Key& k) const {

  return pair<const_iterator,const_iterator>(lower_bound(k), upper_bound(k));

}

 

inline int __black_count(__rb_tree_node_base* node, __rb_tree_node_base* root)

{

  if (node == 0)

    return 0;

  else {

    int bc = node->color == __rb_tree_black ? 1 : 0;

    if (node == root)

      return bc;

    else

      return bc + __black_count(node->parent, root);

  }

}

 

template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>

bool 

rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::__rb_verify() const

{

  if (node_count == 0 || begin() == end())

    return node_count == 0 && begin() == end() &&

      header->left == header && header->right == header;

 

  int len = __black_count(leftmost(), root());

  for (const_iterator it = begin(); it != end(); ++it) {

    link_type x = (link_type) it.node;

    link_type L = left(x);

    link_type R = right(x);

 

    if (x->color == __rb_tree_red)

      if ((L && L->color == __rb_tree_red) ||

          (R && R->color == __rb_tree_red))

        return false;

 

    if (L && key_compare(key(x), key(L)))

      return false;

    if (R && key_compare(key(R), key(x)))

      return false;

 

    if (!L && !R && __black_count(x, root()) != len)

      return false;

  }

 

  if (leftmost() != __rb_tree_node_base::minimum(root()))

    return false;

  if (rightmost() != __rb_tree_node_base::maximum(root()))

    return false;

 

  return true;

}

 

__STL_END_NAMESPACE 

 

#endif /* __SGI_STL_INTERNAL_TREE_H */

 

// Local Variables:

// mode:C++

// End: