stl_tree.h

来源:互联网 发布:疯狂美工助手打不开 编辑:程序博客网 时间:2024/05/23 00:28
stl_tree.hG++ 2.91.57,cygnus\cygwin-b20\include\g++\stl_tree.h 完整列表/* * * Copyright (c) 1996,1997 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation.  Silicon Graphics makes no * representations about the suitability of this software for any * purpose.  It is provided "as is" without express or implied warranty. * * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation.  Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose.  It is provided "as is" without express or implied warranty. * * *//* NOTE: This is an internal header file, included by other STL headers. *   You should not attempt to use it directly. */#ifndef __SGI_STL_INTERNAL_TREE_H#define __SGI_STL_INTERNAL_TREE_H/*本檔實作Red-black tree(紅-黑樹)class,用以實作 STL 關聯式容器(如set, multiset, map, multimap)。所用之insertion 和deletion 演算法係以Cormen, Leiserson 和 Rivest 所著之 Introduction to Algorithms(MIT Press, 1990) 一書為基礎,唯以下兩點不同:(1) header 不僅指向 root,也指向紅黑樹的最左節點,以便實作出常數時間之begin();並且也指向紅黑樹的最右節點,以便set 相關泛型演算法(如set_union 等等)有線性時間之表現。(2) 當一個即將被刪除之節點擁有兩個子節點時,它的successor node isrelinked into its place, rather than copied, 如此一來唯一失效(invalidated)的迭代器就只是那些referring to the deleted node.*/#include <stl_algobase.h>#include <stl_alloc.h>#include <stl_construct.h>#include <stl_function.h>__STL_BEGIN_NAMESPACE typedef bool __rb_tree_color_type;const __rb_tree_color_type __rb_tree_red = false;     // 紅色為 0const __rb_tree_color_type __rb_tree_black = true; // 黑色為 1struct __rb_tree_node_base{  typedef __rb_tree_color_type color_type;  typedef __rb_tree_node_base* base_ptr;  color_type color;     // 節點顏色,非紅即黑。  base_ptr parent;      // RB 樹的許多操作,必須知道父節點。  base_ptr left;          // 指向左節點。  base_ptr right;       // 指向右節點。  static base_ptr minimum(base_ptr x)  {    while (x->left != 0) x = x->left;    // 一直向左走,就會找到最小值,    return x;                            // 這是二元搜尋樹的特性。  }  static base_ptr maximum(base_ptr x)  {    while (x->right != 0) x = x->right;     // 一直向右走,就會找到最大值,    return x;                            // 這是二元搜尋樹的特性。  }};template <class Value>struct __rb_tree_node : public __rb_tree_node_base{  typedef __rb_tree_node<Value>* link_type;  Value value_field;    // 節點實值};struct __rb_tree_base_iterator{  typedef __rb_tree_node_base::base_ptr base_ptr;  typedef bidirectional_iterator_tag iterator_category;  typedef ptrdiff_t difference_type;  base_ptr node;    // 它用來與容器之間產生一個連結關係(make a reference)  // 以下其實可實作於 operator++ 內,因為再無他處會呼叫此函式了。  void increment()  {    if (node->right != 0) {        // 如果有右子節點。狀況(1)      node = node->right;        // 就向右走      while (node->left != 0)    // 然後一直往左子樹走到底        node = node->left;        // 即是解答    }    else {                    // 沒有右子節點。狀況(2)      base_ptr y = node->parent;    // 找出父節點      while (node == y->right) {    // 如果現行節點本身是個右子節點,        node = y;                // 就一直上溯,直到「不為右子節點」止。        y = y->parent;      }      if (node->right != y)        // 「若此時的右子節點不等於此時的父節點」。        node = y;                // 狀況(3) 此時的父節點即為解答。                                      // 否則此時的node 為解答。狀況(4)    }                            // 注意,以上判斷「若此時的右子節點不等於此時的父節點」,是為了應付一種    // 特殊情況:我們欲尋找根節點的下一節點,而恰巧根節點無右子節點。    // 當然,以上特殊作法必須配合 RB-tree 根節點與特殊之header 之間的    // 特殊關係。  }  // 以下其實可實作於 operator-- 內,因為再無他處會呼叫此函式了。  void decrement()  {    if (node->color == __rb_tree_red &&    // 如果是紅節點,且        node->parent->parent == node)        // 父節點的父節點等於自己,      node = node->right;                // 狀況(1) 右子節點即為解答。    // 以上情況發生於node為header時(亦即 node 為 end() 時)。    // 注意,header 之右子節點即 mostright,指向整棵樹的 max 節點。    else if (node->left != 0) {            // 如果有左子節點。狀況(2)      base_ptr y = node->left;            // 令y指向左子節點      while (y->right != 0)                // 當y有右子節點時        y = y->right;                    // 一直往右子節點走到底      node = y;                        // 最後即為答案    }    else {                            // 既非根節點,亦無左子節點。      base_ptr y = node->parent;            // 狀況(3) 找出父節點      while (node == y->left) {            // 當現行節點身為左子節點        node = y;                        // 一直交替往上走,直到現行節點        y = y->parent;                    // 不為左子節點      }      node = y;                        // 此時之父節點即為答案    }  }};template <class Value, class Ref, class Ptr>struct __rb_tree_iterator : public __rb_tree_base_iterator{  typedef Value value_type;  typedef Ref reference;  typedef Ptr pointer;  typedef __rb_tree_iterator<Value, Value&, Value*>     iterator;  typedef __rb_tree_iterator<Value, const Value&, const Value*> const_iterator;  typedef __rb_tree_iterator<Value, Ref, Ptr>   self;  typedef __rb_tree_node<Value>* link_type;  __rb_tree_iterator() {}  __rb_tree_iterator(link_type x) { node = x; }  __rb_tree_iterator(const iterator& it) { node = it.node; }  reference operator*() const { return link_type(node)->value_field; }#ifndef __SGI_STL_NO_ARROW_OPERATOR  pointer operator->() const { return &(operator*()); }#endif /* __SGI_STL_NO_ARROW_OPERATOR */  self& operator++() { increment(); return *this; }  self operator++(int) {    self tmp = *this;    increment();    return tmp;  }      self& operator--() { decrement(); return *this; }  self operator--(int) {    self tmp = *this;    decrement();    return tmp;  }};inline bool operator==(const __rb_tree_base_iterator& x,                       const __rb_tree_base_iterator& y) {  return x.node == y.node;  // 兩個迭代器相等,意指其所指的節點相等。}inline bool operator!=(const __rb_tree_base_iterator& x,                       const __rb_tree_base_iterator& y) {  return x.node != y.node;  // 兩個迭代器不等,意指其所指的節點不等。}#ifndef __STL_CLASS_PARTIAL_SPECIALIZATIONinline bidirectional_iterator_tagiterator_category(const __rb_tree_base_iterator&) {  return bidirectional_iterator_tag();}inline __rb_tree_base_iterator::difference_type*distance_type(const __rb_tree_base_iterator&) {  return (__rb_tree_base_iterator::difference_type*) 0;}template <class Value, class Ref, class Ptr>inline Value* value_type(const __rb_tree_iterator<Value, Ref, Ptr>&) {  return (Value*) 0;}#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */// 以下都是全域函式:__rb_tree_rotate_left(), __rb_tree_rotate_right(),// __rb_tree_rebalance(), __rb_tree_rebalance_for_erase()// 新節點必為紅節點。如果安插處之父節點亦為紅節點,就違反紅黑樹規則,此時必須// 做樹形旋轉(及顏色改變,在程式它處)。inline void __rb_tree_rotate_left(__rb_tree_node_base* x, __rb_tree_node_base*& root){  // x 為旋轉點  __rb_tree_node_base* y = x->right;    // 令y 為旋轉點的右子節點  x->right = y->left;  if (y->left !=0)    y->left->parent = x;        // 別忘了回馬槍設定父節點  y->parent = x->parent;  // 令 y 完全頂替 x 的地位(必須將 x 對其父節點的關係完全接收過來)  if (x == root)                    // x 為根節點    root = y;  else if (x == x->parent->left)    // x 為其父節點的左子節點    x->parent->left = y;  else                            // x 為其父節點的右子節點    x->parent->right = y;              y->left = x;  x->parent = y;}// 新節點必為紅節點。如果安插處之父節點亦為紅節點,就違反紅黑樹規則,此時必須// 做樹形旋轉(及顏色改變,在程式它處)。inline void __rb_tree_rotate_right(__rb_tree_node_base* x, __rb_tree_node_base*& root){  // x 為旋轉點  __rb_tree_node_base* y = x->left;    // y 為旋轉點的左子節點  x->left = y->right;  if (y->right != 0)    y->right->parent = x;     // 別忘了回馬槍設定父節點  y->parent = x->parent;  // 令 y 完全頂替 x 的地位(必須將 x 對其父節點的關係完全接收過來)  if (x == root)                    // x 為根節點    root = y;  else if (x == x->parent->right)    // x 為其父節點的右子節點    x->parent->right = y;  else                            // x 為其父節點的左子節點    x->parent->left = y;  y->right = x;  x->parent = y;}// 重新令樹形平衡(改變顏色及旋轉樹形)// 參數一為新增節點,參數二為 rootinline void __rb_tree_rebalance(__rb_tree_node_base* x, __rb_tree_node_base*& root){  x->color = __rb_tree_red;        // 新節點必為紅  while (x != root && x->parent->color == __rb_tree_red) { // 父節點為紅    if (x->parent == x->parent->parent->left) { // 父節點為祖父節點之左子節點      __rb_tree_node_base* y = x->parent->parent->right;    // 令y 為伯父節點      if (y && y->color == __rb_tree_red) {         // 伯父節點存在,且為紅        x->parent->color = __rb_tree_black;          // 更改父節點為黑        y->color = __rb_tree_black;                // 更改伯父節點為黑        x->parent->parent->color = __rb_tree_red;     // 更改祖父節點為紅        x = x->parent->parent;      }      else {    // 無伯父節點,或伯父節點為黑        if (x == x->parent->right) { // 如果新節點為父節點之右子節點          x = x->parent;          __rb_tree_rotate_left(x, root); // 第一參數為左旋點        }        x->parent->color = __rb_tree_black;    // 改變顏色        x->parent->parent->color = __rb_tree_red;        __rb_tree_rotate_right(x->parent->parent, root); // 第一參數為右旋點      }    }    else {    // 父節點為祖父節點之右子節點      __rb_tree_node_base* y = x->parent->parent->left; // 令y 為伯父節點      if (y && y->color == __rb_tree_red) {        // 有伯父節點,且為紅        x->parent->color = __rb_tree_black;        // 更改父節點為黑        y->color = __rb_tree_black;                 // 更改伯父節點為黑        x->parent->parent->color = __rb_tree_red;     // 更改祖父節點為紅        x = x->parent->parent;    // 準備繼續往上層檢查...      }      else {    // 無伯父節點,或伯父節點為黑        if (x == x->parent->left) {    // 如果新節點為父節點之左子節點          x = x->parent;          __rb_tree_rotate_right(x, root);     // 第一參數為右旋點        }        x->parent->color = __rb_tree_black;    // 改變顏色        x->parent->parent->color = __rb_tree_red;        __rb_tree_rotate_left(x->parent->parent, root); // 第一參數為左旋點      }    }  }    // while 結束  root->color = __rb_tree_black;    // 根節點永遠為黑}inline __rb_tree_node_base*__rb_tree_rebalance_for_erase(__rb_tree_node_base* z,                              __rb_tree_node_base*& root,                              __rb_tree_node_base*& leftmost,                              __rb_tree_node_base*& rightmost){  __rb_tree_node_base* y = z;  __rb_tree_node_base* x = 0;  __rb_tree_node_base* x_parent = 0;  if (y->left == 0)             // z has at most one non-null child. y == z.    x = y->right;               // x might be null.  else    if (y->right == 0)          // z has exactly one non-null child.  y == z.      x = y->left;              // x is not null.    else {                      // z has two non-null children.  Set y to      y = y->right;             //   z's successor.  x might be null.      while (y->left != 0)        y = y->left;      x = y->right;    }  if (y != z) {                 // relink y in place of z.  y is z's successor    z->left->parent = y;     y->left = z->left;    if (y != z->right) {      x_parent = y->parent;      if (x) x->parent = y->parent;      y->parent->left = x;      // y must be a left child      y->right = z->right;      z->right->parent = y;    }    else      x_parent = y;      if (root == z)      root = y;    else if (z->parent->left == z)      z->parent->left = y;    else       z->parent->right = y;    y->parent = z->parent;    __STD::swap(y->color, z->color);    y = z;    // y now points to node to be actually deleted  }  else {                        // y == z    x_parent = y->parent;    if (x) x->parent = y->parent;       if (root == z)      root = x;    else       if (z->parent->left == z)        z->parent->left = x;      else        z->parent->right = x;    if (leftmost == z)       if (z->right == 0)        // z->left must be null also        leftmost = z->parent;    // makes leftmost == header if z == root      else        leftmost = __rb_tree_node_base::minimum(x);    if (rightmost == z)        if (z->left == 0)         // z->right must be null also        rightmost = z->parent;      // makes rightmost == header if z == root      else                      // x == z->left        rightmost = __rb_tree_node_base::maximum(x);  }  if (y->color != __rb_tree_red) {     while (x != root && (x == 0 || x->color == __rb_tree_black))      if (x == x_parent->left) {        __rb_tree_node_base* w = x_parent->right;        if (w->color == __rb_tree_red) {          w->color = __rb_tree_black;          x_parent->color = __rb_tree_red;          __rb_tree_rotate_left(x_parent, root);          w = x_parent->right;        }        if ((w->left == 0 || w->left->color == __rb_tree_black) &&            (w->right == 0 || w->right->color == __rb_tree_black)) {          w->color = __rb_tree_red;          x = x_parent;          x_parent = x_parent->parent;        } else {          if (w->right == 0 || w->right->color == __rb_tree_black) {            if (w->left) w->left->color = __rb_tree_black;            w->color = __rb_tree_red;            __rb_tree_rotate_right(w, root);            w = x_parent->right;          }          w->color = x_parent->color;          x_parent->color = __rb_tree_black;          if (w->right) w->right->color = __rb_tree_black;          __rb_tree_rotate_left(x_parent, root);          break;        }      } else {                  // same as above, with right <-> left.        __rb_tree_node_base* w = x_parent->left;        if (w->color == __rb_tree_red) {          w->color = __rb_tree_black;          x_parent->color = __rb_tree_red;          __rb_tree_rotate_right(x_parent, root);          w = x_parent->left;        }        if ((w->right == 0 || w->right->color == __rb_tree_black) &&            (w->left == 0 || w->left->color == __rb_tree_black)) {          w->color = __rb_tree_red;          x = x_parent;          x_parent = x_parent->parent;        } else {          if (w->left == 0 || w->left->color == __rb_tree_black) {            if (w->right) w->right->color = __rb_tree_black;            w->color = __rb_tree_red;            __rb_tree_rotate_left(w, root);            w = x_parent->left;          }          w->color = x_parent->color;          x_parent->color = __rb_tree_black;          if (w->left) w->left->color = __rb_tree_black;          __rb_tree_rotate_right(x_parent, root);          break;        }      }    if (x) x->color = __rb_tree_black;  }  return y;}template <class Key, class Value, class KeyOfValue, class Compare,          class Alloc = alloc>class rb_tree {protected:  typedef void* void_pointer;  typedef __rb_tree_node_base* base_ptr;  typedef __rb_tree_node<Value> rb_tree_node;  typedef simple_alloc<rb_tree_node, Alloc> rb_tree_node_allocator;  typedef __rb_tree_color_type color_type;public:  // 注意,沒有定義 iterator(喔,不,定義在後面)  typedef Key key_type;  typedef Value value_type;  typedef value_type* pointer;  typedef const value_type* const_pointer;  typedef value_type& reference;  typedef const value_type& const_reference;  typedef rb_tree_node* link_type;  typedef size_t size_type;  typedef ptrdiff_t difference_type;protected:  link_type get_node() { return rb_tree_node_allocator::allocate(); }  void put_node(link_type p) { rb_tree_node_allocator::deallocate(p); }  link_type create_node(const value_type& x) {    link_type tmp = get_node();            // 配置空間    __STL_TRY {      construct(&tmp->value_field, x);    // 建構內容    }    __STL_UNWIND(put_node(tmp));    return tmp;  }  link_type clone_node(link_type x) {    // 複製一個節點(的值和色)    link_type tmp = create_node(x->value_field);    tmp->color = x->color;    tmp->left = 0;    tmp->right = 0;    return tmp;  }  void destroy_node(link_type p) {    destroy(&p->value_field);        // 解構內容    put_node(p);                    // 釋還記憶體  }protected:  // RB-tree 只以三筆資料表現。  size_type node_count; // 追蹤記錄樹的大小(節點數量)  link_type header;    Compare key_compare;     // 節點間的鍵值大小比較準則。應該會是個 function object。  // 以下三個函式用來方便取得 header 的成員  link_type& root() const { return (link_type&) header->parent; }  link_type& leftmost() const { return (link_type&) header->left; }  link_type& rightmost() const { return (link_type&) header->right; }  // 以下六個函式用來方便取得節點 x 的成員  static link_type& left(link_type x) { return (link_type&)(x->left); }  static link_type& right(link_type x) { return (link_type&)(x->right); }  static link_type& parent(link_type x) { return (link_type&)(x->parent); }  static reference value(link_type x) { return x->value_field; }  static const Key& key(link_type x) { return KeyOfValue()(value(x)); }  static color_type& color(link_type x) { return (color_type&)(x->color); }  // 以下六個函式用來方便取得節點 x 的成員  static link_type& left(base_ptr x) { return (link_type&)(x->left); }  static link_type& right(base_ptr x) { return (link_type&)(x->right); }  static link_type& parent(base_ptr x) { return (link_type&)(x->parent); }  static reference value(base_ptr x) { return ((link_type)x)->value_field; }  static const Key& key(base_ptr x) { return KeyOfValue()(value(link_type(x)));}   static color_type& color(base_ptr x) { return (color_type&)(link_type(x)->color); }  // 求取極大值和極小值。node class 有實作此功能,交給它們完成即可。  static link_type minimum(link_type x) {     return (link_type)  __rb_tree_node_base::minimum(x);  }  static link_type maximum(link_type x) {    return (link_type) __rb_tree_node_base::maximum(x);  }public:  typedef __rb_tree_iterator<value_type, reference, pointer> iterator;  typedef __rb_tree_iterator<value_type, const_reference, const_pointer>           const_iterator;#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION  typedef reverse_iterator<const_iterator> const_reverse_iterator;  typedef reverse_iterator<iterator> reverse_iterator;#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */  typedef reverse_bidirectional_iterator<iterator, value_type, reference,                                         difference_type>          reverse_iterator;   typedef reverse_bidirectional_iterator<const_iterator, value_type,                                         const_reference, difference_type>          const_reverse_iterator;#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ private:  iterator __insert(base_ptr x, base_ptr y, const value_type& v);  link_type __copy(link_type x, link_type p);  void __erase(link_type x);  void init() {    header = get_node();    // 產生一個節點空間,令 header 指向它    color(header) = __rb_tree_red; // 令 header 為紅色,用來區分 header                                     // 和 root(在 iterator.operator++ 中)    root() = 0;    leftmost() = header;    // 令 header 的左子節點為自己。    rightmost() = header;    // 令 header 的右子節點為自己。  }public:                                // allocation/deallocation  rb_tree(const Compare& comp = Compare())    : node_count(0), key_compare(comp) { init(); }  // 以另一個 rb_tree 物件 x 為初值  rb_tree(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x)     : node_count(0), key_compare(x.key_compare)  {     header = get_node();    // 產生一個節點空間,令 header 指向它    color(header) = __rb_tree_red;    // 令 header 為紅色    if (x.root() == 0) {    //  如果 x 是個空白樹      root() = 0;      leftmost() = header;     // 令 header 的左子節點為自己。      rightmost() = header; // 令 header 的右子節點為自己。    }    else {    //  x 不是一個空白樹      __STL_TRY {        root() = __copy(x.root(), header);        // ???       }      __STL_UNWIND(put_node(header));      leftmost() = minimum(root());    // 令 header 的左子節點為最小節點      rightmost() = maximum(root());    // 令 header 的右子節點為最大節點    }    node_count = x.node_count;  }  ~rb_tree() {    clear();    put_node(header);  }  rb_tree<Key, Value, KeyOfValue, Compare, Alloc>&   operator=(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x);public:                                    // accessors:  Compare key_comp() const { return key_compare; }  iterator begin() { return leftmost(); }        // RB 樹的起頭為最左(最小)節點處  const_iterator begin() const { return leftmost(); }  iterator end() { return header; }    // RB 樹的終點為 header所指處  const_iterator end() const { return header; }  reverse_iterator rbegin() { return reverse_iterator(end()); }  const_reverse_iterator rbegin() const {     return const_reverse_iterator(end());   }  reverse_iterator rend() { return reverse_iterator(begin()); }  const_reverse_iterator rend() const {     return const_reverse_iterator(begin());  }   bool empty() const { return node_count == 0; }  size_type size() const { return node_count; }  size_type max_size() const { return size_type(-1); }  void swap(rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& t) {    // RB-tree 只以三個資料成員表現。所以互換兩個 RB-trees時,    // 只需將這三個成員互換即可。    __STD::swap(header, t.header);    __STD::swap(node_count, t.node_count);    __STD::swap(key_compare, t.key_compare);  }    public:                                // insert/erase  // 將 x 安插到 RB-tree 中(保持節點值獨一無二)。  pair<iterator,bool> insert_unique(const value_type& x);  // 將 x 安插到 RB-tree 中(允許節點值重複)。  iterator insert_equal(const value_type& x);  iterator insert_unique(iterator position, const value_type& x);  iterator insert_equal(iterator position, const value_type& x);#ifdef __STL_MEMBER_TEMPLATES    template <class InputIterator>  void insert_unique(InputIterator first, InputIterator last);  template <class InputIterator>  void insert_equal(InputIterator first, InputIterator last);#else /* __STL_MEMBER_TEMPLATES */  void insert_unique(const_iterator first, const_iterator last);  void insert_unique(const value_type* first, const value_type* last);  void insert_equal(const_iterator first, const_iterator last);  void insert_equal(const value_type* first, const value_type* last);#endif /* __STL_MEMBER_TEMPLATES */  void erase(iterator position);  size_type erase(const key_type& x);  void erase(iterator first, iterator last);  void erase(const key_type* first, const key_type* last);  void clear() {    if (node_count != 0) {      __erase(root());      leftmost() = header;      root() = 0;      rightmost() = header;      node_count = 0;    }  }      public:                                // 集合(set)的各種操作行為:  iterator find(const key_type& x);  const_iterator find(const key_type& x) const;  size_type count(const key_type& x) const;  iterator lower_bound(const key_type& x);  const_iterator lower_bound(const key_type& x) const;  iterator upper_bound(const key_type& x);  const_iterator upper_bound(const key_type& x) const;  pair<iterator,iterator> equal_range(const key_type& x);  pair<const_iterator, const_iterator> equal_range(const key_type& x) const;public:                                // Debugging.  bool __rb_verify() const;};template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>inline bool operator==(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x,                        const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) {  return x.size() == y.size() && equal(x.begin(), x.end(), y.begin());}template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>inline bool operator<(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x,                       const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) {  return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());}#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDERtemplate <class Key, class Value, class KeyOfValue, class Compare, class Alloc>inline void swap(rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x,                  rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) {  x.swap(y);}#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::operator=(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x) {  if (this != &x) {                                // Note that Key may be a constant type.    clear();    node_count = 0;    key_compare = x.key_compare;            if (x.root() == 0) {      root() = 0;      leftmost() = header;      rightmost() = header;    }    else {      root() = __copy(x.root(), header);      leftmost() = minimum(root());      rightmost() = maximum(root());      node_count = x.node_count;    }  }  return *this;}template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iteratorrb_tree<Key, Value, KeyOfValue, Compare, Alloc>::__insert(base_ptr x_, base_ptr y_, const Value& v) {// 參數x_ 為新值安插點,參數y_ 為安插點之父節點,參數v 為新值。  link_type x = (link_type) x_;  link_type y = (link_type) y_;  link_type z;  // key_compare 是鍵值大小比較準則。應該會是個 function object。  if (y == header || x != 0 || key_compare(KeyOfValue()(v), key(y))) {    z = create_node(v);  // 產生一個新節點    left(y) = z;          // 這使得當 y 即為 header時,leftmost() = z    if (y == header) {      root() = z;      rightmost() = z;    }    else if (y == leftmost())    // 如果y為最左節點      leftmost() = z;               // 維護leftmost(),使它永遠指向最左節點  }  else {    z = create_node(v);        // 產生一個新節點    right(y) = z;                // 令新節點成為安插點之父節點 y 的右子節點    if (y == rightmost())      rightmost() = z;              // 維護rightmost(),使它永遠指向最右節點  }  parent(z) = y;        // 設定新節點的父節點  left(z) = 0;        // 設定新節點的左子節點  right(z) = 0;         // 設定新節點的右子節點                          // 新節點的顏色將在 __rb_tree_rebalance() 設定(並調整)  __rb_tree_rebalance(z, header->parent);    // 參數一為新增節點,參數二為 root  ++node_count;        // 節點數累加  return iterator(z);    // 傳回一個迭代器,指向新增節點}// 安插新值;節點鍵值允許重複。// 注意,傳回值是一個 RB-tree 迭代器,指向新增節點template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iteratorrb_tree<Key, Value, KeyOfValue, Compare, Alloc>::insert_equal(const Value& v){  link_type y = header;  link_type x = root();    // 從根節點開始  while (x != 0) {        // 從根節點開始,往下尋找適當的安插點    y = x;    x = key_compare(KeyOfValue()(v), key(x)) ? left(x) : right(x);    // 以上,遇「大」則往左,遇「小於或等於」則往右  }  return __insert(x, y, v);}// 安插新值;節點鍵值不允許重複,若重複則安插無效。// 注意,傳回值是個pair,第一元素是個 RB-tree 迭代器,指向新增節點,// 第二元素表示安插成功與否。template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>pair<typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator, bool>rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::insert_unique(const Value& v){  link_type y = header;  link_type x = root();    // 從根節點開始  bool comp = true;  while (x != 0) {         // 從根節點開始,往下尋找適當的安插點    y = x;    comp = key_compare(KeyOfValue()(v), key(x)); // v 鍵值小於目前節點之鍵值?    x = comp ? left(x) : right(x);    // 遇「大」則往左,遇「小於或等於」則往右  }  // 離開 while 迴圈之後,y 所指即安插點之父節點(此時的它必為葉節點)  iterator j = iterator(y);   // 令迭代器j指向安插點之父節點 y  if (comp)    // 如果離開 while 迴圈時 comp 為真(表示遇「大」,將安插於左側)    if (j == begin())   // 如果安插點之父節點為最左節點      return pair<iterator,bool>(__insert(x, y, v), true);      // 以上,x 為安插點,y 為安插點之父節點,v 為新值。    else    // 否則(安插點之父節點不為最左節點)      --j;    // 調整 j,回頭準備測試...  if (key_compare(key(j.node), KeyOfValue()(v)))        // 小於新值(表示遇「小」,將安插於右側)    return pair<iterator,bool>(__insert(x, y, v), true);  // 進行至此,表示新值一定與樹中鍵值重複,那麼就不該插入新值。  return pair<iterator,bool>(j, false);}template <class Key, class Val, class KeyOfValue, class Compare, class Alloc>typename rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::iterator rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::insert_unique(iterator position,                                                             const Val& v) {  if (position.node == header->left) // begin()    if (size() > 0 && key_compare(KeyOfValue()(v), key(position.node)))      return __insert(position.node, position.node, v);  // first argument just needs to be non-null     else      return insert_unique(v).first;  else if (position.node == header) // end()    if (key_compare(key(rightmost()), KeyOfValue()(v)))      return __insert(0, rightmost(), v);    else      return insert_unique(v).first;  else {    iterator before = position;    --before;    if (key_compare(key(before.node), KeyOfValue()(v))        && key_compare(KeyOfValue()(v), key(position.node)))      if (right(before.node) == 0)        return __insert(0, before.node, v);       else        return __insert(position.node, position.node, v);    // first argument just needs to be non-null     else      return insert_unique(v).first;  }}template <class Key, class Val, class KeyOfValue, class Compare, class Alloc>typename rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::iterator rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::insert_equal(iterator position,                                                            const Val& v) {  if (position.node == header->left) // begin()    if (size() > 0 && key_compare(KeyOfValue()(v), key(position.node)))      return __insert(position.node, position.node, v);  // first argument just needs to be non-null     else      return insert_equal(v);  else if (position.node == header) // end()    if (!key_compare(KeyOfValue()(v), key(rightmost())))      return __insert(0, rightmost(), v);    else      return insert_equal(v);  else {    iterator before = position;    --before;    if (!key_compare(KeyOfValue()(v), key(before.node))        && !key_compare(key(position.node), KeyOfValue()(v)))      if (right(before.node) == 0)        return __insert(0, before.node, v);       else        return __insert(position.node, position.node, v);    // first argument just needs to be non-null     else      return insert_equal(v);  }}#ifdef __STL_MEMBER_TEMPLATES  template <class K, class V, class KoV, class Cmp, class Al> template<class II>void rb_tree<K, V, KoV, Cmp, Al>::insert_equal(II first, II last) {  for ( ; first != last; ++first)    insert_equal(*first);}template <class K, class V, class KoV, class Cmp, class Al> template<class II>void rb_tree<K, V, KoV, Cmp, Al>::insert_unique(II first, II last) {  for ( ; first != last; ++first)    insert_unique(*first);}#else /* __STL_MEMBER_TEMPLATES */template <class K, class V, class KoV, class Cmp, class Al>voidrb_tree<K, V, KoV, Cmp, Al>::insert_equal(const V* first, const V* last) {  for ( ; first != last; ++first)    insert_equal(*first);}template <class K, class V, class KoV, class Cmp, class Al>voidrb_tree<K, V, KoV, Cmp, Al>::insert_equal(const_iterator first,                                          const_iterator last) {  for ( ; first != last; ++first)    insert_equal(*first);}template <class K, class V, class KoV, class Cmp, class A>void rb_tree<K, V, KoV, Cmp, A>::insert_unique(const V* first, const V* last) {  for ( ; first != last; ++first)    insert_unique(*first);}template <class K, class V, class KoV, class Cmp, class A>void rb_tree<K, V, KoV, Cmp, A>::insert_unique(const_iterator first,                                          const_iterator last) {  for ( ; first != last; ++first)    insert_unique(*first);}#endif /* __STL_MEMBER_TEMPLATES */         template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>inline voidrb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(iterator position) {  link_type y = (link_type) __rb_tree_rebalance_for_erase(position.node,                                                          header->parent,                                                          header->left,                                                          header->right);  destroy_node(y);  --node_count;}template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::size_type rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(const Key& x) {  pair<iterator,iterator> p = equal_range(x);  size_type n = 0;  distance(p.first, p.second, n);  erase(p.first, p.second);  return n;}template <class K, class V, class KeyOfValue, class Compare, class Alloc>typename rb_tree<K, V, KeyOfValue, Compare, Alloc>::link_type rb_tree<K, V, KeyOfValue, Compare, Alloc>::__copy(link_type x, link_type p) {                                // structural copy.  x and p must be non-null.  link_type top = clone_node(x);  top->parent = p;   __STL_TRY {    if (x->right)      top->right = __copy(right(x), top);    p = top;    x = left(x);    while (x != 0) {      link_type y = clone_node(x);      p->left = y;      y->parent = p;      if (x->right)        y->right = __copy(right(x), y);      p = y;      x = left(x);    }  }  __STL_UNWIND(__erase(top));  return top;}template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::__erase(link_type x) {                                // erase without rebalancing  while (x != 0) {    __erase(right(x));    link_type y = left(x);    destroy_node(x);    x = y;  }}template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(iterator first,                                                             iterator last) {  if (first == begin() && last == end())    clear();  else    while (first != last) erase(first++);}template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(const Key* first,                                                             const Key* last) {  while (first != last) erase(*first++);}// 尋找 RB 樹中是否有鍵值為 k 的節點template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::find(const Key& k) {  link_type y = header;        // Last node which is not less than k.   link_type x = root();        // Current node.   while (x != 0)     // 以下,key_compare 是節點鍵值大小比較準則。應該會是個 function object。    if (!key_compare(key(x), k))       // 進行到這裡,表示 x 鍵值大於 k。遇到大值就向左走。      y = x, x = left(x);    // 注意語法!    else      // 進行到這裡,表示 x 鍵值小於 k。遇到小值就向右走。      x = right(x);  iterator j = iterator(y);     return (j == end() || key_compare(k, key(j.node))) ? end() : j;}// 尋找 RB 樹中是否有鍵值為 k 的節點template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::find(const Key& k) const {  link_type y = header; /* Last node which is not less than k. */  link_type x = root(); /* Current node. */  while (x != 0) {    // 以下,key_compare 是節點鍵值大小比較準則。應該會是個 function object。    if (!key_compare(key(x), k))      // 進行到這裡,表示 x 鍵值大於 k。遇到大值就向左走。      y = x, x = left(x);    // 注意語法!    else      // 進行到這裡,表示 x 鍵值小於 k。遇到小值就向右走。      x = right(x);  }  const_iterator j = const_iterator(y);     return (j == end() || key_compare(k, key(j.node))) ? end() : j;}// 計算 RB 樹中鍵值為 k 的節點個數template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::size_type rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::count(const Key& k) const {  pair<const_iterator, const_iterator> p = equal_range(k);  size_type n = 0;  distance(p.first, p.second, n);  return n;}template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::lower_bound(const Key& k) {  link_type y = header; /* Last node which is not less than k. */  link_type x = root(); /* Current node. */  while (x != 0)     if (!key_compare(key(x), k))      y = x, x = left(x);    else      x = right(x);  return iterator(y);}template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::lower_bound(const Key& k) const {  link_type y = header; /* Last node which is not less than k. */  link_type x = root(); /* Current node. */  while (x != 0)     if (!key_compare(key(x), k))      y = x, x = left(x);    else      x = right(x);  return const_iterator(y);}template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::upper_bound(const Key& k) {  link_type y = header; /* Last node which is greater than k. */  link_type x = root(); /* Current node. */   while (x != 0)      if (key_compare(k, key(x)))       y = x, x = left(x);     else       x = right(x);   return iterator(y);}template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::upper_bound(const Key& k) const {  link_type y = header; /* Last node which is greater than k. */  link_type x = root(); /* Current node. */   while (x != 0)      if (key_compare(k, key(x)))       y = x, x = left(x);     else       x = right(x);   return const_iterator(y);}template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>inline pair<typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator,            typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator>rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::equal_range(const Key& k) {  return pair<iterator, iterator>(lower_bound(k), upper_bound(k));}template <class Key, class Value, class KoV, class Compare, class Alloc>inline pair<typename rb_tree<Key, Value, KoV, Compare, Alloc>::const_iterator,            typename rb_tree<Key, Value, KoV, Compare, Alloc>::const_iterator>rb_tree<Key, Value, KoV, Compare, Alloc>::equal_range(const Key& k) const {  return pair<const_iterator,const_iterator>(lower_bound(k), upper_bound(k));}// 計算從 node 至 root 路徑中的黑節點數量。inline int __black_count(__rb_tree_node_base* node, __rb_tree_node_base* root){  if (node == 0)    return 0;  else {    int bc = node->color == __rb_tree_black ? 1 : 0;    if (node == root)      return bc;    else      return bc + __black_count(node->parent, root); // 累加  }}// 驗證己身這棵樹是否符合 RB 樹的條件template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>bool rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::__rb_verify() const{  // 空樹,符合RB樹標準  if (node_count == 0 || begin() == end())    return node_count == 0 && begin() == end() &&      header->left == header && header->right == header;  // 最左(葉)節點至 root 路徑內的黑節點數  int len = __black_count(leftmost(), root());   // 以下走訪整個RB樹,針對每個節點(從最小到最大)...  for (const_iterator it = begin(); it != end(); ++it) {     link_type x = (link_type) it.node; // __rb_tree_base_iterator::node    link_type L = left(x);        // 這是左子節點    link_type R = right(x);     // 這是右子節點    if (x->color == __rb_tree_red)      if ((L && L->color == __rb_tree_red) ||          (R && R->color == __rb_tree_red))        return false;    // 父子節點同為紅色,不符合 RB 樹的要求。    if (L && key_compare(key(x), key(L))) // 目前節點的鍵值小於左子節點鍵值      return false;             // 不符合二元搜尋樹的要求。    if (R && key_compare(key(R), key(x))) // 目前節點的鍵值大於右子節點鍵值      return false;        // 不符合二元搜尋樹的要求。    // 「葉節點至 root」路徑內的黑節點數,與「最左節點至 root」路徑內的黑節點數不同。    // 這不符合 RB 樹的要求。    if (!L && !R && __black_count(x, root()) != len)       return false;  }  if (leftmost() != __rb_tree_node_base::minimum(root()))    return false;    // 最左節點不為最小節點,不符合二元搜尋樹的要求。  if (rightmost() != __rb_tree_node_base::maximum(root()))    return false;    // 最右節點不為最大節點,不符合二元搜尋樹的要求。  return true;}__STL_END_NAMESPACE #endif /* __SGI_STL_INTERNAL_TREE_H */// Local Variables:// mode:C++// End:

0 0
原创粉丝点击