s3c2440启动文件分析

来源:互联网 发布:java web编程宝典 编辑:程序博客网 时间:2024/05/20 02:30

s3c2440启动文件分析

;=========================================

; NAME: 2440INIT.S

; DESC: C start up codes

;       Configure memory, ISR ,stacks

;    Initialize C-variables

; HISTORY:

; 2002.02.25:kwtark: ver 0.0

; 2002.03.20:purnnamu: Add some functions for testing STOP,Sleep mode

; 2003.03.14:DonGo: Modified for 2440.

;=========================================



    GET option.inc

    GET memcfg.inc

    GET 2440addr.inc



BIT_SELFREFRESH EQU    (1<<22)    ;bit[22]=1,others=0(把1左移22位)



;Pre-defined constants        ;系统的工作模式设定

USERMODE    EQU     0x10

FIQMODE     EQU     0x11

IRQMODE     EQU     0x12

SVCMODE     EQU     0x13

ABORTMODE   EQU     0x17

UNDEFMODE   EQU     0x1b

MODEMASK    EQU     0x1f

NOINT       EQU     0xc0



;The location of stacks        ;系统的堆栈空间设定

UserStack    EQU    (_STACK_BASEADDRESS-0x3800)    ;0x33ff4800 ~

SVCStack    EQU    (_STACK_BASEADDRESS-0x2800)    ;0x33ff5800 ~

UndefStack    EQU    (_STACK_BASEADDRESS-0x2400)    ;0x33ff5c00 ~

AbortStack    EQU    (_STACK_BASEADDRESS-0x2000)    ;0x33ff6000 ~

IRQStack    EQU    (_STACK_BASEADDRESS-0x1000)    ;0x33ff7000 ~

FIQStack    EQU    (_STACK_BASEADDRESS-0x0)    ;0x33ff8000 ~



;arm处理器有两种工作状态 1.arm:32位 这种工作状态下执行字对准的arm指令 2.Thumb:16位 这种工作状

;态执行半字对准的Thumb指令

;因为处理器分为16位 32位两种工作状态 程序的编译器也是分16位和32两种编译方式 所以下面的程序用

;于根据处理器工作状态确定编译器编译方式

;code16伪指令指示汇编编译器后面的指令为16位的thumb指令

;code32伪指令指示汇编编译器后面的指令为32位的arm指令

;这段是为了统一目前的处理器工作状态和软件编译方式(16位编译环境使用tasm.exe编译

;Check if tasm.exe(armasm -16 ...@ADS 1.0) is used.



    GBLL    THUMBCODE    ;定义一个全局变量

    [ {CONFIG} = 16            ;if config==16 这里表示你的目前处于领先地16位编译方式

THUMBCODE SETL  {TRUE}        ;设置THUMBCODE 为 true表示告诉系统当前想用thumb,但实际启动时不行,只能启动后再跳

                            ; ][|]表示if else endif

        CODE32                ;启动时强制使用32位编译模式

         |

THUMBCODE SETL  {FALSE}        ;如果系统要求是ARM指令,则直接设置THUMBCODE 为 false 说明当前的是32位编译模式

    ]



         MACRO                ;宏定义

    MOV_PC_LR

         [ THUMBCODE

        bx lr

         |

        mov    pc,lr

         ]

    MEND



         MACRO

    MOVEQ_PC_LR

         [ THUMBCODE

        bxeq lr        ;相等Z=1,则跳转

         |

        moveq pc,lr

         ]

    MEND



;注意下面这段程序是个宏定义 很多人对这段程序不理解 我再次强调这是一个宏定义 所以大家要注意了

;下面包含的HandlerXXX HANDLER HandleXXX将都被下面这段程序展开

;这段程序用于把中断服务程序的首地址装载到pc中,有人称之为“加载程序”。

;本初始化程序定义了一个数据区(在文件最后),34个字空间,存放相应中断服务程序的首地址。每个字

;空间都有一个标号,以Handle***命名。

;在向量中断模式下使用“加载程序”来执行中断服务程序。

;这里就必须讲一下向量中断模式和非向量中断模式的概念

;向量中断模式是当cpu读取位于0x18处的IRQ中断指令的时候,系统自动读取对应于该中断源确定地址上的;

;指令取代0x18处的指令,通过跳转指令系统就直接跳转到对应地址

;函数中 节省了中断处理时间提高了中断处理速度标 例如 ADC中断的向量地址为0xC0,则在0xC0处放如下

;代码:ldr PC,=HandlerADC 当ADC中断产生的时候系统会

;自动跳转到HandlerADC函数中

;非向量中断模式处理方式是一种传统的中断处理方法,当系统产生中断的时候,系统将interrupt

;pending寄存器中对应标志位置位 然后跳转到位于0x18处的统一中断

;函数中 该函数通过读取interrupt pending寄存器中对应标志位 来判断中断源 并根据优先级关系再跳到

;对应中断源的处理代码中



         MACRO

$HandlerLabel HANDLER $HandleLabel



$HandlerLabel

    sub    sp,sp,#4    ;decrement sp(to store jump address)

    stmfd    sp!,{r0}    ;PUSH the work register to stack(lr does't push because it return to original address)

    ldr     r0,=$HandleLabel;load the address of HandleXXX to r0

    ldr     r0,[r0]     ;load the contents(service routine start address) of HandleXXX

    str     r0,[sp,#4]      ;store the contents(ISR) of HandleXXX to stack

    ldmfd   sp!,{r0,pc}     ;POP the work register and pc(jump to ISR)

    MEND

;将$HandleLabel地址空间中的数据给PC,中断服务程序的入口





    IMPORT  |Image$$RO$$Limit|  ; End of ROM code (=start of ROM data)

    IMPORT  |Image$$RW$$Base|   ; Base of RAM to initialise

    IMPORT  |Image$$ZI$$Base|   ; Base and limit of area

    IMPORT  |Image$$ZI$$Limit|  ; to zero initialise



    IMPORT    Main

;导入要用到的字符常量



    AREA    Init,CODE,READONLY



;异常中断矢量表(每个表项占4个字节) 下面是中断向量表 一旦系统运行时有中断发生 即使移植了操作

;系统 如linux 处理器已经把控制权交给了操作系统 一旦发生中断 处理器还是会跳转到从0x0开始

;中断向量表中某个中断表项(依据中断类型)开始执行

;具体中断向量布局请参考s3c44b0 spec 例如 adc中断向量为 0x000000c0下面对应表中第49项位置 向量地址0x0+4*(49-1)=0x000000c0



    ENTRY

;板子上电和复位后 程序开始从位于0x0处开始执行硬件刚刚上电复位后 程序从这里开始执行跳转到标

;为ResetHandler处执行



    ;1)The code, which converts to Big-endian, should be in little endian code.

    ;2)The following little endian code will be compiled in Big-Endian mode.

    ;  The code byte order should be changed as the memory bus width.

    ;3)The pseudo instruction,DCD can't be used here because the linker generates error.

    

    ;条件编译,在编译成机器码前就设定好

    ASSERT    :DEF:ENDIAN_CHANGE    ;判断ENDIAN_CHANGE是否已定义

    [ ENDIAN_CHANGE                ;如果已经定义了ENDIAN_CHANGE,则判断,here is FALSE

        ASSERT  :DEF:ENTRY_BUS_WIDTH    ;判断ENTRY_BUS_WIDTH是否已定义

        ][ ENTRY_BUS_WIDTH=32    ;如果已经定义了ENTRY_BUS_WIDTH,则判断是不是为32

        b    ChangeBigEndian            ;DCD 0xea000007

        ]

    ;在bigendian中,地址为A的字单元包括字节单元A,A+1,A+2,A+3,字节单元由高位到低位为A,A+1,A+2,A+3

    ;                地址为A的字单元包括半字单元A,A+2,半字单元由高位到低位为A,A+2

        [ ENTRY_BUS_WIDTH=16

        andeq    r14,r7,r0,lsl #20   ;DCD 0x0007ea00    也是b    ChangeBigEndian指令,只是由于总线不一样而取机器码的顺序不一样

        ]                            ;先取低位->高位    上述指令是通过机器码装换而来的



        [ ENTRY_BUS_WIDTH=8

        streq    r0,][r0,-r10,ror #1] ;DCD 0x070000ea 也是b    ChangeBigEndian指令,只是由于总线不一样而取机器码的顺序不一样

        ]

    |

        b    ResetHandler        ;//here is the first instrument  0x00

    ]

    b    HandlerUndef    ;handler for Undefined mode    ;0x04

    b    HandlerSWI    ;handler for SWI interrupt        ;0x08

    b    HandlerPabort    ;handler for PAbort            ;0x0c

    b    HandlerDabort    ;handler for DAbort            ;0x10

    b    .        ;reserved                            ;0x14

    b    HandlerIRQ    ;handler for IRQ interrupt        ;0x18

    b    HandlerFIQ    ;handler for FIQ interrupt        ;0x1c



;@0x20

    b    EnterPWDN    ; Must be @0x20.





;通过设置CP15的C1的位7,设置存储格式为Bigendian,三种总线方式

ChangeBigEndian ;//here ENTRY_BUS_WIDTH=16

;@0x24

    [ ENTRY_BUS_WIDTH=32

        DCD    0xee110f10    ;0xee110f10 => mrc p15,0,r0,c1,c0,0

        DCD    0xe3800080    ;0xe3800080 => orr r0,r0,#0x80;  //Big-endian

        DCD    0xee010f10    ;0xee010f10 => mcr p15,0,r0,c1,c0,0

        ;对存储器控制寄存器操作,指定内存模式为Big-endian

        ;因为刚开始CPU都是按照32位总线的指令格式运行的,如果采用其他的话,CPU别不了,必须转化

        ;但当系统初始化好以后,则CPU能自动识别

    ]

    [ ENTRY_BUS_WIDTH=16

        DCD 0x0f10ee11

        DCD 0x0080e380

        DCD 0x0f10ee01

        ;因为采用Big-endian模式,采用16位总线时,物理地址的高位和数据的地位对应

        ;所以指令的机器码也相应的高低对调

    ]

    [ ENTRY_BUS_WIDTH=8

        DCD 0x100f11ee

        DCD 0x800080e3

        DCD 0x100f01ee

    ]

    DCD 0xffffffff  ;swinv 0xffffff is similar with NOP and run well in both endian mode.

    DCD 0xffffffff

    DCD 0xffffffff

    DCD 0xffffffff

    DCD 0xffffffff

    b ResetHandler



;Function for entering power down mode

; 1. SDRAM should be in self-refresh mode.

; 2. All interrupt should be maksked for SDRAM/DRAM self-refresh.

; 3. LCD controller should be disabled for SDRAM/DRAM self-refresh.

; 4. The I-cache may have to be turned on.

; 5. The location of the following code may have not to be changed.



;void EnterPWDN(int CLKCON);

EnterPWDN

    mov r2,r0        ;r2=rCLKCON 保存原始数据 0x4c00000c 使能各模块的时钟输入

    tst r0,#0x8        ;测试bit[3] SLEEP mode? 1=>sleep

    bne ENTER_SLEEP    ;C=0,即TST结果非0,bit[3]=1



;//进入PWDN后如果不是sleep则进入stop



;//进入Stop mode

ENTER_STOP

    ldr r0,=REFRESH        ;0x48000024   DRAM/SDRAM refresh config

    ldr r3,[r0]            ;r3=rREFRESH

    mov r1, r3

    orr r1, r1, #BIT_SELFREFRESH    ;Enable SDRAM self-refresh

    str r1, [r0]        ;Enable SDRAM self-refresh

;//Enable SDRAM self-refresh

    mov r1,#16            ;wait until self-refresh is issued. may not be needed.

0    subs r1,r1,#1

    bne %B0

;//wait 16 fclks for self-refresh

    ldr r0,=CLKCON        ;enter STOP mode.

    str r2,[r0]

;//??????????????



    mov r1,#32

0    subs r1,r1,#1    ;1) wait until the STOP mode is in effect.

    bne %B0            ;2) Or wait here until the CPU&Peripherals will be turned-off

                    ;Entering SLEEP mode, only the reset by wake-up is available.



    ldr r0,=REFRESH ;exit from SDRAM self refresh mode.

    str r3,[r0]



    MOV_PC_LR        ;back to main process

        



ENTER_SLEEP

    ;NOTE.

    ;1) rGSTATUS3 should have the return address after wake-up from SLEEP mode.



    ldr r0,=REFRESH

    ldr r1,[r0]        ;r1=rREFRESH

    orr r1, r1, #BIT_SELFREFRESH

    str r1, [r0]        ;Enable SDRAM self-refresh

;//Enable SDRAM self-refresh



    mov r1,#16            ;Wait until self-refresh is issued,which may not be needed.

0    subs r1,r1,#1

    bne %B0

;//Wait until self-refresh is issued,which may not be needed



    ldr    r1,=MISCCR        ;IO register

    ldr    r0,[r1]

    orr    r0,r0,#(7<<17)  ;Set SCLK0=1, SCLK1=1, SCKE=1.

    str    r0,[r1]



    ldr r0,=CLKCON        ; Enter sleep mode

    str r2,[r0]



    b .            ;CPU will die here.

;//进入Sleep Mode,1)设置SDRAM为self-refresh

;//                   2)设置MISCCR bit[17] 1:sclk0=sclk 0:sclk0=0

;//                                 bit[18] 1:sclk1=sclk 0:sclk1=0

;//                                 bit[19] 1:Self refresh retain enable

;//                                         0:Self refresh retain disable  

;//                                         When 1, After wake-up from sleep, The self-refresh will be retained.



WAKEUP_SLEEP

    ;Release SCLKn after wake-up from the SLEEP mode.

    ldr    r1,=MISCCR

    ldr    r0,[r1]

    bic    r0,r0,#(7<<17)  ;SCLK0:0->SCLK, SCLK1:0->SCLK, SCKE:0->=SCKE.

    str    r0,[r1]

;//设置MISCCR



    ;Set memory control registers

     ldr    r0,=SMRDATA

    ldr    r1,=BWSCON    ;BWSCON Address    ;//总线宽度和等待控制寄存器

    add    r2, r0, #52    ;End address of SMRDATA

0

    ldr    r3, [r0], #4    ;数据处理后R0自加4,[R0]->R3,R0+4->R0

    str    r3, [r1], #4

    cmp    r2, r0

    bne    %B0

;//设置所有的memory control register,他的初始地址为BWSCON,初始化

;//数据在以SMRDATA为起始的存储区



    mov r1,#256

0    subs r1,r1,#1    ;1) wait until the SelfRefresh is released.

    bne %B0

;//1) wait until the SelfRefresh is released.



    ldr r1,=GSTATUS3     ;GSTATUS3 has the start address just after SLEEP wake-up

    ldr r0,[r1]



    mov pc,r0

;//跳出Sleep Mode,进入Sleep状态前的PC







;//异常中断宏调用

    LTORG

HandlerFIQ      HANDLER HandleFIQ

HandlerIRQ      HANDLER HandleIRQ

HandlerUndef    HANDLER HandleUndef

HandlerSWI      HANDLER HandleSWI

HandlerDabort   HANDLER HandleDabort

HandlerPabort   HANDLER HandlePabort



IsrIRQ

    sub    sp,sp,#4       ;reserved for PC

    stmfd    sp!,{r8-r9}



    ldr    r9,=INTOFFSET    ;地址为0x4a000014的空间存着中断的偏移

    ldr    r9,[r9]            ;I_ISR

    ldr    r8,=HandleEINT0

    add    r8,r8,r9,lsl #2

    ldr    r8,[r8]

    str    r8,[sp,#8]

    ldmfd    sp!,{r8-r9,pc}

;//外部中断号判断,通过中断服务程序入口地址存储器的地址偏移确定

;//PC=[HandleEINT0+][INTOFFSET]]



;=======

; ENTRY

;扳子上电和复位后 程序开始从位于0x0执行b ResetHandler 程序从跳转到这里执行

;板子上电复位后 执行几个步骤这里通过标号在注释中加1,2,3....标示 标号表示执行顺序

;1.禁止看门狗 屏蔽所有中断

;=======

ResetHandler



;//1.禁止看门狗 屏蔽所有中断

    ldr    r0,=WTCON       ;watch dog disable

    ldr    r1,=0x0

    str    r1,[r0]



    ldr    r0,=INTMSK

    ldr    r1,=0xffffffff  ;all interrupt disable

    str    r1,[r0]



    ldr    r0,=INTSUBMSK

    ldr    r1,=0x3ff        ;all sub interrupt disable

    str    r1,[r0]



    [ {FALSE}

            ;//rGPFDAT = (rGPFDAT & ~(0xf<<4)) | ((~data & 0xf)<<4);

            ;//Led_Display

    ldr    r0,=GPFCON        ;//F-IO In/Out config 10 10 10 10 00 00 00 00

    ldr    r1,=0x5500            ;//00 = Input 01 = Output

    str    r1,][r0]                ;//10 = EINT[0] 11 = Reserved    

    ldr    r0,=GPFDAT        ;//F-IO data register

    ldr    r1,=0x10

    str    r1,[r0]

    ]



;//2.根据工作频率设置pll

;这里介绍一下计算公式

;//Fpllo=(m*Fin)/(p*2^s)

;//m=MDIV+8,p=PDIV+2,s=SDIV

;The proper range of P and M: 1<=P<=62, 1<=M<=248



;Fpllo必须大于20Mhz小于66Mhz

;Fpllo*2^s必须小于170Mhz

;如下面的PLLCON设定中的M_DIV P_DIV S_DIV是取自option.h中

;#elif (MCLK==40000000)

;#define PLL_M (0x48)

;#define PLL_P (0x3)

;#define PLL_S (0x2)

;所以m=MDIV+8=80,p=PDIV+2=5,s=SDIV=2

;硬件使用晶振为10Mhz,即Fin=10Mhz

;Fpllo=80*10/5*2^2=40Mhz



    ;To reduce PLL lock time, adjust the LOCKTIME register.

    ldr    r0,=LOCKTIME

    ldr    r1,=0xffffff

    str    r1,[r0]

;//设置PLL的重置延迟



    [ PLL_ON_START

    ; Added for confirm clock divide. for 2440.

    ; Setting value Fclk:Hclk:Pclk

    ldr    r0,=CLKDIVN  

    ldr    r1,=CLKDIV_VAL        ; 0=1:1:1, 1=1:1:2, 2=1:2:2, 3=1:2:4, 4=1:4:4, 5=1:4:8, 6=1:3:3, 7=1:3:6.

    str    r1,][r0]                ;//数据表示分频数



    ;//Configure UPLL Fin=12.0MHz UFout=48MHz

    ldr    r0,=UPLLCON

    ldr    r1,=((U_MDIV<<12)+(U_PDIV<<4)+U_SDIV) ;//USB PLL CONFIG

    str    r1,[r0]

    

    nop    ;// Caution: After UPLL setting, at least 7-clocks delay must be inserted for setting hardware be completed.

    nop

    nop

    nop

    nop

    nop

    nop

    ;//Configure MPLL Fin=12.0MHz MFout=304.8MHz

    ldr    r0,=MPLLCON

    ldr    r1,=((M_MDIV<<12)+(M_PDIV<<4)+M_SDIV)

    str    r1,[r0]

    ]

    

;//Check if the boot is caused by the wake-up from SLEEP mode.

    ldr    r1,=GSTATUS2

    ldr    r0,[r1]

    tst    r0,#0x2        ;test if bit[1] is 1 or 0 0->C=1

                    ;                          1->C=0

    ;In case of the wake-up from SLEEP mode, go to SLEEP_WAKEUP handler.

    bne    WAKEUP_SLEEP    ;C=0,jump



    EXPORT StartPointAfterSleepWakeUp

StartPointAfterSleepWakeUp



;//3.置存储相关寄存器的程序

;这是设置SDRAM,flash ROM 存储器连接和工作时序的程序,片选定义的程序

;SMRDATA map在下面的程序中定义

;SMRDATA中涉及的值请参考memcfg.s程序

;具体寄存器各位含义请参考s3c44b0 spec    

    ;Set memory control registers

     ldr    r0,=SMRDATA

    ldr    r1,=BWSCON    ;BWSCON Address

    add    r2, r0, #52    ;End address of SMRDATA



    

0

    ldr    r3, [r0], #4

    str    r3, [r1], #4

    cmp    r2, r0

    bne    %B0

;//set memory registers





;//4.初始化各模式下的栈指针

         ;Initialize stacks

    bl    InitStacks

    

    



;//5.设置缺省中断处理函数

      ; Setup IRQ handler

    ldr    r0,=HandleIRQ       ;This routine is needed

    ldr    r1,=IsrIRQ      ;if there isn't 'subs pc,lr,#4' at 0x18, 0x1c

    str    r1,[r0]

    ;//initialize the IRQ 将普通中断判断程序的入口地址给HandleIRQ

    

    



;//6.将数据段拷贝到ram中 将零初始化数据段清零 跳入C语言的main函数执行 到这步结束bootloader初步引导结束

    ;If main() is used, the variable initialization will be done in __main().

    

    [    :LNOT:USE_MAIN    ;initialized {FALSE}

                          ;Copy and paste RW data/zero initialized data

                          

    LDR     r0, =|Image$$RO$$Limit| ; Get pointer to ROM data

    LDR     r1, =|Image$$RW$$Base|  ; and RAM copy

    LDR     r3, =|Image$$ZI$$Base|  

    

    ;Zero init base => top of initialised data

    CMP     r0, r1      ; Check that they are different just for debug??????????????????????????

    BEQ     %F2

1       

    CMP     r1, r3      ; Copy init data

    LDRCC   r2, ][r0], #4    ;--> LDRCC r2, [r0] + ADD r0, r0, #4         

    STRCC   r2, [r1], #4    ;--> STRCC r2, [r1] + ADD r1, r1, #4

    BCC     %B1

2       

    LDR     r1, =|Image$$ZI$$Limit| ; Top of zero init segment

    MOV     r2, #0

3       

    CMP     r3, r1      ; Zero init

    STRCC   r2, [r3], #4

    BCC     %B3

    ]





       

    [ :LNOT:THUMBCODE    ;if thumbcode={false} bl main

        bl    Main        ;Don't use main() because ......

        b    .                       

    ]





;//if thumbcod={ture}

    [ THUMBCODE         ;for start-up code for Thumb mode

        orr    lr,pc,#1

        bx    lr

        CODE16

        bl    Main        ;Don't use main() because ......

        b    .

        CODE32

    ]





;function initializing stacks

InitStacks

    ;Don't use DRAM,such as stmfd,ldmfd......

    ;SVCstack is initialized before

    ;Under toolkit ver 2.5, 'msr cpsr,r1' can be used instead of 'msr cpsr_cxsf,r1'

    

    mrs    r0,cpsr

    bic    r0,r0,#MODEMASK

    orr    r1,r0,#UNDEFMODE|NOINT

    msr    cpsr_cxsf,r1        ;UndefMode

    ldr    sp,=UndefStack        ; UndefStack=0x33FF_5C00



    orr    r1,r0,#ABORTMODE|NOINT

    msr    cpsr_cxsf,r1        ;AbortMode

    ldr    sp,=AbortStack        ; AbortStack=0x33FF_6000



    orr    r1,r0,#IRQMODE|NOINT

    msr    cpsr_cxsf,r1        ;IRQMode

    ldr    sp,=IRQStack        ; IRQStack=0x33FF_7000



    orr    r1,r0,#FIQMODE|NOINT

    msr    cpsr_cxsf,r1        ;FIQMode

    ldr    sp,=FIQStack        ; FIQStack=0x33FF_8000



    bic    r0,r0,#MODEMASK|NOINT

    orr    r1,r0,#SVCMODE

    msr    cpsr_cxsf,r1        ;SVCMode

    ldr    sp,=SVCStack        ; SVCStack=0x33FF_5800



    ;USER mode has not be initialized.

    ;//为什么不用初始化user的stacks,系统刚启动的时候运行在哪个模式下???????????????????

    mov    pc,lr

    ;The LR register won't be valid if the current mode is not SVC mode.?????????????

;//系统一开始运行就是SVCmode????????????????????????????????????????

    

;=====================================================================

; Clock division test

; Assemble code, because VSYNC time is very short

;=====================================================================

    EXPORT CLKDIV124

    EXPORT CLKDIV144

    

CLKDIV124

    

    ldr     r0, = CLKDIVN

    ldr     r1, = 0x3        ; 0x3 = 1:2:4

    str     r1, [r0]

;    wait until clock is stable

    nop

    nop

    nop

    nop

    nop



    ldr     r0, = REFRESH

    ldr     r1, [r0]

    bic        r1, r1, #0xff

    bic        r1, r1, #(0x7<<8)

    orr        r1, r1, #0x470    ; REFCNT135

    str     r1, [r0]

    nop

    nop

    nop

    nop

    nop

    mov     pc, lr



CLKDIV144

    ldr     r0, = CLKDIVN

    ldr     r1, = 0x4        ; 0x4 = 1:4:4

    str     r1, [r0]

;    wait until clock is stable

    nop

    nop

    nop

    nop

    nop



    ldr     r0, = REFRESH

    ldr     r1, [r0]

    bic        r1, r1, #0xff

    bic        r1, r1, #(0x7<<8)

    orr        r1, r1, #0x630    ; REFCNT675 - 1520

    str     r1, [r0]

    nop

    nop

    nop

    nop

    nop

    mov     pc, lr





;存储器控制寄存器的定义区

    LTORG



SMRDATA DATA

; Memory configuration should be optimized for best performance

; The following parameter is not optimized.

; Memory access cycle parameter strategy

; 1) The memory settings is  safe parameters even at HCLK=75Mhz.

; 2) SDRAM refresh period is for HCLK<=75Mhz.



    DCD (0+(B1_BWSCON<<4)+(B2_BWSCON<<8)+(B3_BWSCON<<12)+(B4_BWSCON<<16)+(B5_BWSCON<<20)+(B6_BWSCON<<24)+(B7_BWSCON<<28))

    DCD ((B0_Tacs<<13)+(B0_Tcos<<11)+(B0_Tacc<<8)+(B0_Tcoh<<6)+(B0_Tah<<4)+(B0_Tacp<<2)+(B0_PMC))   ;GCS0

    DCD ((B1_Tacs<<13)+(B1_Tcos<<11)+(B1_Tacc<<8)+(B1_Tcoh<<6)+(B1_Tah<<4)+(B1_Tacp<<2)+(B1_PMC))   ;GCS1

    DCD ((B2_Tacs<<13)+(B2_Tcos<<11)+(B2_Tacc<<8)+(B2_Tcoh<<6)+(B2_Tah<<4)+(B2_Tacp<<2)+(B2_PMC))   ;GCS2

    DCD ((B3_Tacs<<13)+(B3_Tcos<<11)+(B3_Tacc<<8)+(B3_Tcoh<<6)+(B3_Tah<<4)+(B3_Tacp<<2)+(B3_PMC))   ;GCS3

    DCD ((B4_Tacs<<13)+(B4_Tcos<<11)+(B4_Tacc<<8)+(B4_Tcoh<<6)+(B4_Tah<<4)+(B4_Tacp<<2)+(B4_PMC))   ;GCS4

    DCD ((B5_Tacs<<13)+(B5_Tcos<<11)+(B5_Tacc<<8)+(B5_Tcoh<<6)+(B5_Tah<<4)+(B5_Tacp<<2)+(B5_PMC))   ;GCS5

    DCD ((B6_MT<<15)+(B6_Trcd<<2)+(B6_SCAN))    ;GCS6

    DCD ((B7_MT<<15)+(B7_Trcd<<2)+(B7_SCAN))    ;GCS7

    DCD ((REFEN<<23)+(TREFMD<<22)+(Trp<<20)+(Trc<<18)+(Tchr<<16)+REFCNT)



    DCD 0x32        ;SCLK power saving mode, BANKSIZE 128M/128M



    DCD 0x30        ;MRSR6 CL=3clk

    DCD 0x30        ;MRSR7 CL=3clk





    ALIGN



    AREA RamData, DATA, READWRITE



    ^   _ISR_STARTADDRESS        ; _ISR_STARTADDRESS=0x33FF_FF00

HandleReset     #   4

HandleUndef     #   4

HandleSWI        #   4

HandlePabort    #   4

HandleDabort    #   4

HandleReserved  #   4

HandleIRQ        #   4

HandleFIQ        #   4



;Don't use the label 'IntVectorTable',

;The value of IntVectorTable is different with the address you think it may be.

;IntVectorTable

;@0x33FF_FF20

HandleEINT0        #   4

HandleEINT1        #   4

HandleEINT2        #   4

HandleEINT3        #   4

HandleEINT4_7    #   4

HandleEINT8_23    #   4

HandleCAM        #   4        ; Added for 2440.

HandleBATFLT    #   4

HandleTICK        #   4

HandleWDT        #   4

HandleTIMER0     #   4

HandleTIMER1     #   4

HandleTIMER2     #   4

HandleTIMER3     #   4

HandleTIMER4     #   4

HandleUART2      #   4

;@0x33FF_FF60

HandleLCD         #   4

HandleDMA0        #   4

HandleDMA1        #   4

HandleDMA2        #   4

HandleDMA3        #   4

HandleMMC        #   4

HandleSPI0        #   4

HandleUART1        #   4

HandleNFCON        #   4        ; Added for 2440.

HandleUSBD        #   4

HandleUSBH        #   4

HandleIIC        #   4

HandleUART0     #   4

HandleSPI1         #   4

HandleRTC         #   4

HandleADC         #   4

;@0x33FF_FFA0

    END