new /delete 和malloc/free区别

来源:互联网 发布:服装设计图软件 编辑:程序博客网 时间:2024/06/05 23:38

相同点:都可用于申请动态内存和释放内存

不同点
(1)操作对象有所不同
malloc与free是C++/C 语言的标准库函数,new/delete 是C++的运算符。对于非内部数据类的对象而言,光用maloc/free 无法满足动态对象的要求。对象在创建的同时要自动执行构造函数, 对象消亡之前要自动执行析构函数。由于malloc/free 是库函数而不是运算符,不在编译器控制权限之内,不能够把执行构造函数和析构函数的任务强加malloc/free。

(2)在用法上也有所不同
函数malloc 的原型如下:
void * malloc(size_t size);
用malloc 申请一块长度为length 的整数类型的内存,程序如下:
int *p = (int *) malloc(sizeof(int) * length);
我们应当把注意力集中在两个要素上:“类型转换”和“sizeof”。 malloc 返回值的类型是void *,所以在调用malloc 时要显式地进行类型转换,将void * 转换成所需要的指针类型。
 malloc 函数本身并不识别要申请的内存是什么类型,它只关心内存的总字节数。

函数free 的原型如下:

void free( void * memblock );
为什么free 函数不象malloc 函数那样复杂呢?这是因为指针p 的类型以及它所指的内存的容量事先都是知道的,语句free(p)能正确地释放内存。如果p 是NULL 指针,那么free

对p 无论操作多少次都不会出问题。如果p 不是NULL 指针,那么free 对p连续操作两次就会导致程序运行错误。

new/delete 的使用要点
运算符new 使用起来要比函数malloc 简单得多,例如:
int *p1 = (int *)malloc(sizeof(int) * length);
int *p2 = new int[length];
这是因为new 内置了sizeof、类型转换和类型安全检查功能。对于非内部数据类型的对象而言,new 在创建动态对象的同时完成了初始化工作。如果对象有多个构造函数,那么new 的语句也可以有多种形式。

如果用new 创建对象数组,那么只能使用对象的无参数构造函数。例如
Obj *objects = new Obj[100]; // 创建100 个动态对象
不能写成
Obj *objects = new Obj[100](1);// 创建100 个动态对象的同时赋初值1
在用delete 释放对象数组时,留意不要丢了符号‘[]’。例如
delete []objects; // 正确的用法
delete objects; // 错误的用法
后者相当于delete objects[0],漏掉了另外99 个对象。

/*******************************************************************************************************************

摘自《高质量C++/C编程指南》1,malloc与free是C++/C语言的标准库函数,new/delete是C++的运算符。它们都可用于申请动态内存和释放内存。
        2,对于非内部数据类型的对象而言,光用malloc/free无法满足动态对象的要求。对象在创建的同时要自动执行构造函数,对象在消亡之前要自动执行析构函数。由于malloc/free是库函数而不是运算符,不在编译器控制权限之内,不能够把执行构造函数和析构函数的任务强加于malloc/free。
        3,C++语言需要一个能完成动态内存分配和初始化工作的运算符new,以一个能完成清理与释放内存工作的运算符delete。注意new/delete不是库函数。
        4,C++程序经常要调用C函数,而C程序只能用malloc/free管理动态内存

new 是个操作符,和什么"+","-","="...有一样的地位.
        malloc是个分配内存的函数,供你调用的.
        new是保留字,不需要头文件支持.
        malloc需要头文件库函数支持.new 建立的是一个对象,
        malloc分配的是一块内存.
        new建立的对象你可以把它当成一个普通的对象,用成员函数访问,不要直接访问它的地址空间
        malloc分配的是一块内存区域,就用指针访问好了,而且还可以在里面移动指针.

/*********************************************************************************************************************************

1.内存分配方式
内存分配方式有三种:
[1]从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。例如全局变量,static变量。
[2]在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。
[3]从堆上分配,亦称动态内存分配。程序在运行的时候用malloc或new申请任意多少的内存,程序员自己负责在何时用free或delete释放内存。动态内存的生存期由程序员决定,使用非常灵活,但如果在堆上分配了空间,就有责任回收它,否则运行的程序会出现内存泄漏,频繁地分配和释放不同大小的堆空间将会产生堆内碎块。
2.程序的内存空间
一个程序将操作系统分配给其运行的内存块分为4个区域,如下图所示。
代码区(code area) 程序内存空间 
全局数据区(data area) 
堆区(heap area) 
栈区(stack area)

一个由C/C++编译的程序占用的内存分为以下几个部分,
1、栈区(stack)   由编译器自动分配释放 ,存放为运行函数而分配的局部变量、函数参数、返回数据、返回地址等。其操作方式类似于数据结构中的栈。
2、堆区(heap)    一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。分配方式类似于链表。
3、全局区(静态区)(static)存放全局变量、静态数据、常量。程序结束后有系统释放
4、文字常量区 常量字符串就是放在这里的。 程序结束后由系统释放。
5、程序代码区存放函数体(类成员函数和全局函数)的二进制代码。
下面给出例子程序,
int a = 0; //全局初始化区
char *p1; //全局未初始化区
int main() { 
int b; //栈
char s[] = \"abc\"; //栈
char *p2; //栈
char *p3 = \"123456\"; //123456\\0在常量区,p3在栈上。
static int c =0;//全局(静态)初始化区
p1 = new char[10]; 
p2 = new char[20]; 
//分配得来得和字节的区域就在堆区。
strcpy(p1, \"123456\"); //123456\\0放在常量区,编译器可能会将它与p3所指向的\"123456\"优化成一个地方。
}

3.堆与栈的比较
3.1申请方式
stack: 由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间。
heap: 需要程序员自己申请,并指明大小,在C中malloc函数,C++中是new运算符。
如p1 = (char *)malloc(10); p1 = new char[10]; 
如p2 = (char *)malloc(10); p2 = new char[20]; 
但是注意p1、p2本身是在栈中的。
3.2申请后系统的响应
栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。
堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序。
对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。
由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。
3.3申请大小的限制 
栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因 此,能从栈获得的空间较小。
堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。
3.4申请效率的比较
栈由系统自动分配,速度较快。但程序员是无法控制的。
堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便。
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是栈,而是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活。
3.5堆和栈中的存储内容 
栈:在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。
当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。
堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。
3.6存取效率的比较
char s1[] = \"a\"; 
char *s2 = \"b\"; 
a是在运行时刻赋值的;而b是在编译时就确定的;但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。 比如:
int main(){ 
char a = 1; 
char c[] = \"1234567890\"; 
char *p =\"1234567890\"; 
a = c[1]; 
a = p[1]; 
return 0; 
}

对应的汇编代码
10: a = c[1]; 
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh] 
0040106A 88 4D FC mov byte ptr [ebp-4],cl 
11: a = p[1]; 
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h] 
00401070 8A 42 01 mov al,byte ptr [edx+1] 
00401073 88 45 FC mov byte ptr [ebp-4],al

第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,再根据edx读取字符,显然慢了。
3.7小结
堆和栈的主要区别由以下几点:
1、管理方式不同;
2、空间大小不同;
3、能否产生碎片不同;
4、生长方向不同;
5、分配方式不同;
6、分配效率不同;
管理方式:对于栈来讲,是由编译器自动管理,无需我们手工控制;对于堆来说,释放工作由程序员控制,容易产生memory leak。
空间大小:一般来讲在32位系统下,堆内存可以达到4G的空间,从这个角度来看堆内存几乎是没有什么限制的。但是对于栈来讲,一般都是有一定的空间大小的,例如,在VC6下面,默认的栈空间大小是1M。当然,这个值可以修改。
碎片问题:对于堆来讲,频繁的new/delete势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低。对于栈来讲,则不会存在这个问题,因为栈是先进后出的队列,他们是如此的一一对应,以至于永远都不可能有一个内存块从栈中间弹出,在他弹出之前,在他上面的后进的栈内容已经被弹出,详细的可以参考数据结构。
生长方向:对于堆来讲,生长方向是向上的,也就是向着内存地址增加的方向;对于栈来讲,它的生长方向是向下的,是向着内存地址减小的方向增长。
分配方式:堆都是动态分配的,没有静态分配的堆。栈有2种分配方式:静态分配和动态分配。静态分配是编译器完成的,比如局部变量的分配。动态分配由malloca函数进行分配,但是栈的动态分配和堆是不同的,他的动态分配是由编译器进行释放,无需我们手工实现。
分配效率:栈是机器系统提供的数据结构,计算机会在底层对栈提供支持:分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令执行,这就决定了栈的效率比较高。堆则是C/C++函数库提供的,它的机制是很复杂的,例如为了分配一块内存,库函数会按照一定的算法(具体的算法可以参考数据结构/操作系统)在堆内存中搜索可用的足够大小的空间,如果没有足够大小的空间(可能是由于内存碎片太多),就有可能调用系统功能去增加程序数据段的内存空间,这样就有机会分 到足够大小的内存,然后进行返回。显然,堆的效率比栈要低得多。
从这里我们可以看到,堆和栈相比,由于大量new/delete的使用,容易造成大量的内存碎片;由于没有专门的系统支持,效率很低;由于可能引发用户态和核心态的切换,内存的申请,代价变得更加昂贵。所以栈在程序中是应用最广泛的,就算是函数的调用也利用栈去完成,函数调用过程中的参数,返回地址, EBP和局部变量都采用栈的方式存放。所以,我们推荐大家尽量用栈,而不是用堆。
虽然栈有如此众多的好处,但是由于和堆相比不是那么灵活,有时候分配大量的内存空间,还是用堆好一些。
无论是堆还是栈,都要防止越界现象的发生(除非你是故意使其越界),因为越界的结果要么是程序崩溃,要么是摧毁程序的堆、栈结构,产生以想不到的结果。
4.new/delete与malloc/free比较
从C++角度上说,使用new分配堆空间可以调用类的构造函数,而malloc()函数仅仅是一个函数调用,它不会调用构造函数,它所接受的参数是一个unsigned long类型。同样,delete在释放堆空间之前会调用析构函数,而free函数则不会。
class Time{
public:
    Time(int,int,int,string);
    ~Time(){
       cout<<\"call Time\'s destructor by:\"<<name<<endl;
    }
private:
    int hour;
    int min;
    int sec;
    string name;
}; 
Time::Time(int h,int m,int s,string n){
hour=h;
min=m;
sec=s;
name=n;
cout<<\"call Time\'s constructor by:\"<<name<<endl;

int main(){
Time *t1;
t1=(Time*)malloc(sizeof(Time)); 
free(t1);
Time *t2;
t2=new Time(0,0,0,\"t2\");
delete t2;
system(\"PAUSE\");
return EXIT_SUCCESS;
}

结果:
call Time\'s constructor by:t2
call Time\'s destructor by:t2
从结果可以看出,使用new/delete可以调用对象的构造函数与析构函数,并且示例中调用的是一个非默认构造函数。但在堆上分配对象数组时,只能调用默认构造函数,不能调用其他任何构造函数。