fork,vfork和clone底层实现

来源:互联网 发布:java表单 编辑:程序博客网 时间:2024/06/07 18:07

fork,vfork,clone都是linux的系统调用,用来创建子进程的(确切说vfork创造出来的是线程)。

先介绍下进程必须的4要点:

a.要有一段程序供该进程运行,就像一场戏剧要有一个剧本一样。该程序是可以被多个进程共享的,多场戏剧用一个剧本一样。

b.有起码的私有财产,就是进程专用的系统堆栈空间。

c.有“户口”,既操作系统所说的进程控制块,在linux中具体实现是task_struct

d.有独立的存储空间。

当一个进程缺少d条件时候,我们称其为线程。

1.fork 创造的子进程复制了父亲进程的资源,包括内存的内容task_struct内容(2个进程的pid不同)。这里是资源的复制不是指针的复制。下面的例子可以看出

[root@liumengli program]# cat testFork.c
#include"stdio.h"

int main() {
        int count = 1;
        int child;

        if(!(child = fork())) { //开始创建子进程
                printf("This is son, his count is: %d. and his pid is: %d/n", ++count, getpid());//子进程的内容
        } else {
                printf("This is father, his count is: %d, his pid is: %d/n", count, getpid());
        }
}
[root@liumengli program]# gcc testFork.c -o testFork
[root@liumengli program]# ./testFork
This is son, his count is: 2. and his pid is: 3019
This is father, his count is: 1, his pid is: 3018
[root@liumengli program]#
从代码里面可以看出2者的pid不同,内存资源count是值得复制,子进程改变了count的值,而父进程中的count没有被改变。有人认为这样大批量的复制会导致执行效率过低。其实在复制过程中,子进程复制了父进程的task_struct,系统堆栈空间和页面表,这意味着上面的程序,我们没有执行 count++前,其实子进程和父进程的count指向的是同一块内存。而当子进程改变了父进程的变量时候,会通过copy_on_write的手段为所涉及的页面建立一个新的副本。所以当我们执行++count后,这时候子进程才新建了一个页面复制原来页面的内容,基本资源的复制是必须的,而且是高效的。整体看上去就像是父进程的独立存储空间也复制了一遍。

 

其次,我们看到子进程和父进程直接没有互相干扰,明显2者资源都独立了。我们看下面程序

[root@liumengli program]# cat testFork.c
#include"stdio.h"

int main() {
        int count = 1;
        int child;

        if(!(child = fork())) {
                int i;
                for(i = 0; i < 200; i++) {
                        printf("This is son, his count is: %d. and his pid is: %d/n", i, getpid());
                }
        } else {
                printf("This is father, his count is: %d, his pid is: %d/n", count, getpid());
        }
}
[root@liumengli program]# gcc testFork.c -o testFork
[root@liumengli program]# ./testFork
...

This is son, his count is: 46. and his pid is: 4092
This is son, his count is: 47. and his pid is: 4092
This is son, his count is: 48. and his pid is: 4092
This is son, his count is: 49. and his pid is: 4092
This is son, his count is: 50. and his pid is: 4092
This is father, his count is: 1, his pid is: 4091
[root@liumengli program]# This is son, his count is: 51. and his pid is: 4092
This is son, his count is: 52. and his pid is: 4092
...

(运气很衰,非要200多个才有效果,郁闷)从结果可以看出父子2个进程是同步运行的。这和下面的vfork有区别。

 

2.vfork创建出来的不是真正意义上的进程,而是一个线程,因为它缺少了我们上面提到的进程的四要素的第4项,独立的内存资源,看下面的程序

[root@liumengli program]# cat testVfork.c
#include "stdio.h"

int main() {
        int count = 1;
        int child;

        printf("Before create son, the father's count is:%d/n", count);
        if(!(child = vfork())) {
                printf("This is son, his pid is: %d and the count is: %d/n", getpid(), ++count);
                exit(1);
        } else {
                printf("After son, This is father, his pid is: %d and the count is: %d, and the child is: %d/n", getpid(), count, child);
        }
}
[root@liumengli program]# gcc testVfork.c -o testVfork
[root@liumengli program]# ./testVfork
Before create son, the father's count is:1
This is son, his pid is: 4185 and the count is: 2
After son, This is father, his pid is: 4184 and the count is: 2, and the child is: 4185
[root@liumengli program]#
从运行结果可以看到vfork创建出的子进程(线程)共享了父进程的count变量,这一次是指针复制,2者的指针指向了同一个内存,所以子进程修改了 count变量,父进程的 count变量同样受到了影响。另外由vfork创造出来的子进程还会导致父进程挂起,除非子进程exit或者execve才会唤起父进程,看下面程序:

[root@liumengli program]# cat testVfork.c
#include "stdio.h"

int main() {
        int count = 1;
        int child;

        printf("Before create son, the father's count is:%d/n", count);
        if(!(child = vfork())) {
                int i;
                for(i = 0; i < 100; i++) {
                        printf("This is son, The i is: %d/n", i);
                        if(i == 70)
                                exit(1);
                }
                printf("This is son, his pid is: %d and the count is: %d/n", getpid(), ++count);
                exit(1);
        } else {
                printf("After son, This is father, his pid is: %d and the count is: %d, and the child is: %d/n", getpid(), count, child);
        }
}
[root@liumengli program]# gcc testVfork.c -o testVfork
[root@liumengli program]# ./testVfork
...

This is son, The i is: 68
This is son, The i is: 69
This is son, The i is: 70
After son, This is father, his pid is: 4433 and the count is: 1, and the child is: 4434
[root@liumengli program]#
从这里就可以看到父进程总是等子进程执行完毕后才开始继续执行。

 

3.clone函数功能强大,带了众多参数,因此由他创建的进程要比前面2种方法要复杂。clone可以让你有选择性的继承父进程的资源,你可以选择想vfork一样和父进程共享一个虚存空间,从而使创造的是线程,你也可以不和父进程共享,你甚至可以选择创造出来的进程和父进程不再是父子关系,而是兄弟关系。先有必要说下这个函数的结构

int clone(int (*fn)(void *), void *child_stack, int flags, void *arg);

这里fn是函数指针,我们知道进程的4要素,这个就是指向程序的指针,就是所谓的“剧本", child_stack明显是为子进程分配系统堆栈空间(在linux下系统堆栈空间是2页面,就是8K的内存,其中在这块内存中,低地址上放入了值,这个值就是进程控制块task_struct的值),flags就是标志用来描述你需要从父进程继承那些资源, arg就是传给子进程的参数)。下面是flags可以取的值

标志                     含义

CLONE_PARENT 创建的子进程的父进程是调用者的父进程,新进程与创建它的进程成了“兄弟”而不是“父子”

CLONE_FS         子进程与父进程共享相同的文件系统,包括root、当前目录、umask

CLONE_FILES    子进程与父进程共享相同的文件描述符(file descriptor)表

CLONE_NEWNS 在新的namespace启动子进程,namespace描述了进程的文件hierarchy

CLONE_SIGHAND 子进程与父进程共享相同的信号处理(signal handler)表

CLONE_PTRACE 若父进程被trace,子进程也被trace

CLONE_VFORK   父进程被挂起,直至子进程释放虚拟内存资源

CLONE_VM         子进程与父进程运行于相同的内存空间

CLONE_PID        子进程在创建时PID与父进程一致

CLONE_THREAD Linux 2.4中增加以支持POSIX线程标准,子进程与父进程共享相同的线程群

下面的例子是创建一个线程(子进程共享了父进程虚存空间,没有自己独立的虚存空间不能称其为进程)。父进程被挂起当子线程释放虚存资源后再继续执行。

[root@liumengli program]# cat test_clone.c
#include "stdio.h"
#include "sched.h"
#include "signal.h"
#define FIBER_STACK 8192
int a;
void * stack;
int do_something(){
        printf("This is son, the pid is:%d, the a is: %d/n", getpid(), ++a);
        free(stack); //这里我也不清楚,如果这里不释放,不知道子线程死亡后,该内存是否会释放,知情者可以告诉下,谢谢
        exit(1);
}
int main() {
        void * stack;
        a = 1;
        stack = malloc(FIBER_STACK);//为子进程申请系统堆栈
        if(!stack) {
                printf("The stack failed/n");
                exit(0);
        }

        printf("creating son thread!!!/n");

        clone(&do_something, (char *)stack + FIBER_STACK, CLONE_VM|CLONE_VFORK, 0);//创建子线程
         printf("This is father, my pid is: %d, the a is: %d/n", getpid(), a);
         exit(1);
}
[root@liumengli program]# gcc test_clone.c -o test_clone
[root@liumengli program]# ./test_clone
creating son thread!!!
This is son, the pid is:7326, the a is: 2
This is father, my pid is: 7325, the a is: 2
[root@liumengli program]#

读者可以试试其它的资源继承方式。

 

 

    这里介绍fork, vfork和 clone的具体实现    它们具体实现的代码如下:    asmlinkage int sys_fork(struct pt_regs regs)    {        return do_fork(SIGCHLD, regs.esp, ®s, 0);    }    asmlinkage int sys_clone(struct pt_regs regs)    {        unsigned long clone_flags;        unsigned long newsp;        clone_flags = regs.ebx;        newsp = regs.ecx;        if (!newsp)            newsp = regs.esp;        return do_fork(clone_flags, newsp, ®s, 0);    }    asmlinkage int sys_vfork(struct pt_regs regs)    {        return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, ®s, 0);    }    这里可以看到它们都是对do_fork的调用,不过是参数不同而已下面是 do_fork函数(很长)    int do_fork(unsigned int clone_flags, unsigned long stack_start, struct pt_regs * regs, unsigned long stack_size) {    // 对于clone_flags是由2部分组成,最低字节为信号类型,用于规定子进程去世时向父进程发出的信号。我们可以看到在fork和vfork中这个信号就是SIGCHLD,而clone则可以由用户自己定义。而第2部分是资源表示资源和特性的标志位(前面我们见过这些标志了),对于 fork我们可以看出第2部分全部是0表现对有关资源都要复制而不是通过指针共享。而对于vfork则是CLONE_VFORK|CLONE_VM(看了 fork,vfork,clone,应该很熟悉了)表示对虚存空间的共享和对父进程的挂起和唤醒,至于clone则是由用户自己来定义的        int retval = -ENOMEM;        struct task_struct *p;        DECLARE_MUTEX_LOCKED(sem); //定义和创建了一个用于进程互斥和同步的信号量,这里不做讨论                if(clone_flags & CLONE_PID)     { //CLONE_PID信号是子进程和父进程拥有相同的PID号,这只有一种情况可以使用,就是父进程的PID为0,这里是做这个保证            if(current->pid)                return -EPERM;        }                current->vfork_sem = sem;                p = alloc_task_struct();//为子进程分配2个页面(为什么是2个,前面看过也该明白用来做系统堆栈和存放task_struct的)        if(!p)            goto fork_out;                    *p = *current; //将父进程的task_struct赋值到2个页面中                retval = -EAGAIN;        if(atomic_read(&p->user->processes) >= p->rlim[RLIMIT_NPROC].rlim_cur) //p->user 指向该进程所属用户的数据结构,这个数据结构见下(内核进程不属于任何用户,所以它的p->user = 0),p->rlim是对进程资源的限制,而p->rlim[RLIMIT_NPROC]则规定了该进程所属用户可以拥有的进程数量,如果超过这个数量就不可以再fork了            goto bad_fork_free;        atomic_inc(&p->user->__count);        atomic_inc(&p->user->processes);                if(nr_threads >= max_threads) //上面是对用户进程的限制,这里是对内核进程的数量限制            goto bad_fork_cleanup_count;                    get_exec_domain(p->exec_domain); //p->exec_domain指向一个exec_domain结构,定义见下。                if(p->binfmt && p->binfmt->module) //每个进程都属于某种可执行的印象格式如a.out或者elf,对这些格式的支持都是通过动态安装驱动模块来实现的,binfmt就是用来指向这些格式驱动            __MOD_INC_USE_COUNT(p->binfmt->module);                p->did_exec = 0;        p->swappable = 0;        p->state = TASK_UNINTERRUPTIBLE; //为下面设置PID做准备,明显get_pid是一种独占行为,不能多个进程同时去get_pid,因此在这里可能需要将当前进程睡眠,所以设置这个                copy_flags(clone_flags, p);        p->pid = get_pid(clone_flags); //设置新建进程的PID                p->run_list.next = NULL;        p->run_list.prev = NULL;                if((clone_flags & CLONE_VFORK) || !(clone_flags & CLONE_PARENT))     {            p->p_opptr = current;            if(!(p->trace & PT_PTRACED))                p->p_pptr = current;        }        p->p_cptr = NULL;        init_waitqueue_head(&p->wait_childexit); //wait4()与wait3()函数是一个进程等待子进程完成使命后再继续执行,这个队列为此做准备,这里是做初始化        p->vfork_sem = NULL;        spin_lock_init(&p->alloc_lock);                p->sigpending = 0;        init_sigpending(&p->sigpending); //对子进程待处理信号队列和有关结构成分初始化                p->it_real_value = p->it_virt_value = p->it_prof_value = 0;        p->it_real_incr = p->it_virt_incr = p->it_prof_incr = 0;        init_timer(&p->real_timer);        p->real_timer.data = (unsigned long)p;                p->leader = 0;        p->tty_old_pgrp = 0;        p->times.tms_utime = p->times.tms_stime = 0;        p->times.tms_curtime = p->times.tms_cstime = 0; //对进程各种记时器的初始化    #ifdef CONFIG_SMP        {            int i;            p->has_cpu = 0;            p->processor = current->processor;                        for(i = 0; i < smp_num_cpus; i++)                p->per_cpu_utime[i] = p->per_cpu_stime[i] = 0;            spin_lock_init(&p->sigmask_lock);        }    #endif //多处理器相关        p->lock_death = -1;        p->start_time = jiffies; //对进程初始时间的初始化,jeffies是时钟中断记录的记时器,到这里task_struct基本初始化完毕                retval = -ENOMEM;        if(copy_files(clone_flags,p)) //copy_files是复制已打开文件的控制结构,但只有才clone_flags中CLONE_FILES标志才能进行,否则只是共享            goto bad_fork_cleanup;        if(copy_fs(clone_flags, p)); //依然是对文件的,详细的参考文件系统            goto bad_fork_cleanup_files;        if(copy_sighand(clone_flags, p))//和上面一样,这里是对信号的处理方式            goto bad_fork_cleanpu_fs;        if(copy_mm(clone_flags, p))//内存,下面给出了copy_mm的代码            goto bad_fork_cleanup_sighand; //到这里所有需要有条件复制的资源全部结束        retval  = copy_thread(0, clone_flags, stack_start, stack_size, p, regs); //4个资源中,还剩系统堆栈资源没有复制,这里是解决这个问题的        if(retval)            goto bad_fork_cleanup_sighand;        p->semundo = NULL;                p->parent_exec_id = p->self_exec_id; //parent_exec_id父进程的执行域            /* ok, now we should be set up.. */        p->swappable = 1;//表示本进程的页面可以被换出        p->exit_signal = clone_flags & CSIGNAL;        p->pdeath_signal = 0;        p->counter = (current->counter + 1) >> 1;        current->counter >>= 1;//父进程的分配的时间额被分成2半        if (!current->counter)            current->need_resched = 1; //让父子进程各拥有时间的一半                retval = p->pid;        p->tgid = retval;        INIT_LIST_HEAD(&p->thread_group);        write_lock_irq(&tasklist_lock);        if (clone_flags & CLONE_THREAD) {            p->tgid = current->tgid;            list_add(&p->thread_group, ¤t->thread_group);        }        SET_LINKS(p); //将子进程的PCB放入进程队列,让它可以接受调度        hash_pid(p);    //将子进程放入hash表中        nr_threads++;        write_unlock_irq(&tasklist_lock);        if (p->ptrace & PT_PTRACED)            send_sig(SIGSTOP, p, 1);        wake_up_process(p); /* do this last *///将子进程唤醒,到这里子进程已经完成了        ++total_forks;            fork_out:        if ((clone_flags & CLONE_VFORK) && (retval > 0))            down(&sem); //这里就是达到扣留一个进程的目的        return retval;    } //进程虽然创建结束,但有个特殊情况有待考虑就是调用者是 vfork,标志位CLONE_VFORK,此时由于决定采用的是CLONE_VM,父子2个进程是共享用户空间的,对堆栈空间的写入更是致命,因为会导致其中一个因为非法越界而死亡,所以做法是扣留其中一个进程    struct user_struct { //描述用户的数据结构        atomic_t __count;    /* reference count */        atomic_t processes;    /* How many processes does this user have? */        atomic_t files;        /* How many open files does this user have? */        /* Hash table maintenance information */        struct user_struct *next, **pprev; //用于杂凑表,对用户名施以杂凑运算        uid_t uid;    };    struct exec_domain     {        const char        *name;        /* name of the execdomain */        handler_t        handler;    /* handler for syscalls */        unsigned char        pers_low;    /* lowest personality */ //指向某种域的代码,有PER_LILNUX, PER_SVR4,PER_BSD和PER_SOLARIS这是表示进程的执行域        unsigned char        pers_high;    /* highest personality */        unsigned long        *signal_map;    /* signal mapping */        unsigned long        *signal_invmap;    /* reverse signal mapping */        struct map_segment    *err_map;    /* error mapping */        struct map_segment    *socktype_map;    /* socket type mapping */        struct map_segment    *sockopt_map;    /* socket option mapping */        struct map_segment    *af_map;    /* address family mapping */        struct module        *module;    /* module context of the ed. */ //在linux系统中设备驱动程序"动态安装模块",使其运行动态的安装和拆除        struct exec_domain    *next;        /* linked list (internal) */    };    static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)     {        struct mm_struct * mm, *old_mm;        int retval;                tsk->min_flt = tsk->maj_flt = 0;        tsk->cmin_flt = tsk->cmaj_flt = 0;        tsk->nswap = tsk->cnswap = 0;                tsk->mm = NULL;        tsk->active_mm = NULL;                old_mm = current->mm;        if(!old_mm)            return 0;                if(clone_flags & CLONE_VM) {//从这里可以看出,如果是共享内存的话,只是将mm由父进程赋值给了子进程,2个进程将会指向同一块内存            atomic_inc(&old_mm->mm_users);            mm = oldmm;            goto good_mm;        }                retval = -ENOMEM;        mm = allocate_mm();        if(!mm)            goto fail_nomem;                memcpy(mm, oldmm, sizeof(*mm));        if(!mm_init(mm));            goto fail_nomem;                down(&oldmm->mmap_sem);        retval = dup_mmap(mm); //这里完成了对vm_area_struct和页面表的复制        up(&oldmm->mmap_sem);                if(retval)            goto free_pt;                copy_segments(tsk, mm);                if(init_new_context(tsk, mm));            goto free_pt;            good_mm:        tsk->mm = mm;        tsk->active_mm = mm;        return 0;    free_pt:        mmput(mm);    fail_nomem:        return retval;    }    static inline int dup_mmap(struct mm_struct * mm) {        struct vm_area_struct * mpnt, * tmp, **prev;        int retval;                flush_cache_mm(current->mm);        mm->locked_vm = 0;        mm->mmap = NULL;        mm->mmap_avl = NULL;        mm->mmap_cache = NULL;        mm->map_count = 0;        mm->cpu_vm_mask = 0;        mm->swap_cnt = 0;        mm->swap_address = 0;        pprev = &mm->mmap;                for(mpnt = current->mm_mmap; mpnt; mpnt= mpnt->vm_next) { //遍历队列,对属于父进程的所有mm_struct开始遍历            struct file * file;                        retval = -ENOMEM;            if(mpnt->vm_flags & VM_DONTCOPY)                continue;            tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);//给TMP申请缓存            if(!tmp)                goto fail_nomem;            *tmp = *mpnt;            tmp->vm_flags &= ~VM_LOCKED;            tmp->vm_mm = mm;            mm->map_count++;            tmp->vm_next = NULL;            file = tmp->vm_file;            if(file) {                struct inode *inode = file->f_dentry->d_inode;                get_file(file);                if(tmp->vm_flags & VM_DENYWRITE)                    atomic_dec(&inode->i_writecount);                                spin_lock(&inode->i_mapping->i_shared_lock);                if((tmp->vm_next_share = mpnt->vm_next_share) != NULL)                    mpnt->vm_next_share->vm_pprev_share = &tmp->vm_next_share;                mpnt->vm_next_share = tmp;                tmp->vm_pprev_share = &mpnt->vm_next_share;                spin_unlock(&inode->i_mapping->i_shared_lock);            }                        retval = (mm, current->mm, tmp);            if(!retval && tmp->tmp->vm_ops && tmp->vm_ops->open)                tmp->vm_ops->open(tmp);                        *pprev = tmp;            pprev = &tmp->vm_next;                        if(retval)                goto fail_nomem;        }        retval = 0;        if(mm->map_count >= AVL_MIN_MAP_COUNT)            build_mmap_avl(mm);    fail_nomem;        flush_tlb_mm(current->mm);        return retval;    }    int copy_page_range(struct mm_struct * dst, struct mm_struct * src, struct vm_area_struct * vma) {        pgd_t * src_pgd, * dst_pgd;        unsigned long address = vma->vm_start;        unsigned long end = vma->vm_end;        unsigned long cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;                src_pgd = pgd_offset(src, address) - 1;        dst_pgd = pgd_offset(dst, address) - 1;                for(;;) { //对页面目录表项的循环            pmd_t * src_pmd, * dst_pmd;                        src_pgd++;            dst_pgd++;                        if(pgd_none(*src_pgd))                goto skip_copy_pmd_range;            if(pgd_bad(* src_pgd)) {                pgd_ERROR(*src_pgd);                pgd_clear(src_pgd);    skip_copy_pmd_range:                address = (address + PGDIR_SIZE) &PGDIR_MASK;                if(!address || (address >= end))                    goto out;                continue;            }                        if(pgd_none(*dst_pgd)) {                if(!pmd_alloc(dst_pgd, 0))                    goto nomem;            }                        src_pmd = pmd_offset(src_pgd, address);            dst_pmd = pmd_offset(dst_pgd, address);                        do{ //对中间目录的循环                pte_t * src_pte, * dst_pte;                                if(pmd_none(*src_pmd))                    goto skip_copy_pte_range;                if(pmd_bad(*src_pmd)) {                    pmd_ERROR(*src_pmd);                    pmd_clear(src_pmd);    skip_copy_pte_range:                    address = (address + PMD_SIZE) & PMD_MASK;                    if(address >= end)                        goto out;                    goto cont_copy_pmd_range;                }                if(pmd_none(*dst_pmd))                 {                    if(!pte_alloc(dst_pmd, 0))                        goto nomem;                }                                src_pte = pte_offset(src_pmd, address);                dst_pte = pte_offset(dst_pmd, address);                                do{ //对页面表的循环                    pte_t pte = *src__pte;                    struct page * ptepage;                                        if(pte_none(pte)) //映射尚未建立的表项,直接跳过                        goto cont_copy_pte_range_noset;                    if(!pte_present(pte)) { //说明该页面被交换到了磁盘,只是对盘上页面用户计数加一                        swap_duplicate(pte_to_swp_entry(pte));                        goto cont_copy_pte_range;                    }                    ptepage = pte_page(pte);                    if((!VALLID_PAGE(ptepage)) || PageReserved(ptepage)) //不是有效页面,此页面对应的表项直接复制到子进程的页面表中                        goto cont_copy_pte_range;                                            if(cow) { //使用copy_on_write机制,这里就是子进程本来应该从父进程中复制出来的页面                        ptep_set_wrprotect(src_pte); //将原来父进程的可惜页面改成写保护                        pte = * src_pte;                    }                                        if(vma->vm_flags& VM_SHARED)                        pte = pte_mkclean(pte); //将父进程的页面表项复制到子进程中    //从这里我们就看到,不是一开始就是为子进程开辟一个新的内存页面,然后将对应的父进程中的页面内容复制到该内存中,这种消耗过大,实际做法是先将这个内存改成写保护,然后将页面表项复制给子进程,最后,若真的父进程或者子进程会对这个页面执行写操作,便会发生写保护异常,异常处理程序中才将这个页面复制出来从而达到了"父子分家"                    pte = pte_mkold(pte);                    get_page(ptepage);    cont_copy_pte_range:                    set_pte(dst_pte, pte); //直接复制页面表项    cont_copy_pte_range_noset:                    if(address >= end)                        goto out;                    src_pte++;                    dst_pte++;                } while((unsigned long)src_pte & PTE_TABLE_MASK);    cont_copy_pmd_rang:                src_pmd++;                dst_pmd++;            } while((unsigned long) src_pmd & PMD_TABLE_MASK);        }    out:        return 0;    nomem:        return -ENOMEM;    } //从这里我们看到一个页面都没复制,这就是为什么fork也能达到vfork 创建线程那么快的效率    int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,    unsigned long unused,    struct task_struct * p, struct pt_regs * regs)    {        struct pt_regs * childregs;            childregs = ((struct pt_regs *) (THREAD_SIZE + (unsigned long) p)) - 1; //中断前夕,系统堆栈的高部保存了各个部分的寄存器的信息        struct_cpy(childregs, regs); //将父进程的内容全部复制给子进程        childregs->eax = 0; //对子进程的系统堆栈做少量调整,首先是对 eax寄存器内容置0        childregs->esp = esp;//将esp指定成给定的esp           //task_thread记载了一些关键性信息,包括进程切换时到系统态的堆栈指针,取指令地址,明显这些父子2个进程是不可以完全复制的,一下是对这些的修改        p->thread.esp = (unsigned long) childregs; //将堆栈指针指向正确的位置        p->thread.esp0 = (unsigned long) (childregs+1);//堆栈的顶部也指向真确的位置            p->thread.eip = (unsigned long) ret_from_fork;//这是当进程下一次切换时将进入的切入点,在进程切换里会详细提到            savesegment(fs,p->thread.fs);        savesegment(gs,p->thread.gs);            unlazy_fpu(current);        struct_cpy(&p->thread.i387, ¤t->thread.i387);            return 0;    }

原创粉丝点击