Cassandra失效检测原理

来源:互联网 发布:软件分发平台 编辑:程序博客网 时间:2024/05/07 13:18

Cassandra失效检测原理

一、传统失效检测及其不足

传统失效检测方法

在分布式系统中经常使用心跳(Heartbeat)来检测Server的健康状况,但从理论上来说,心跳无法真正检测对方是否crash,主要困难在于无法真正区别对方是宕机还是“慢”。传统的检测方法是设定一个超时时间T,只要在T之内没有接收到对方的心跳包便认为对方宕机,方法简单粗暴,但使用广泛。

传统错误检测存在的缺陷

如上所述,在传统方式下,目标主机会每间隔t秒发起心跳,而接收方采用超时时间T(t<T)来判断目标是否宕机,接收方首先要非常清楚目标的心跳规律(周期为t的间隔)才能正确设定一个超时时间T,而T的选择依赖当前网络状况、目标主机的处理能力等很多不确定因素,因此在实际中往往会通过测试或估计的方式为T赋一个上限值。上限值设置过大,会导致判断“迟缓”,但会增大判断的正确性;过小,会提高判断效率,但会增加误判的可能性。但下面几种场景不能使用传统检测方法:

1.Gossip通信

但在实际应用中,比如基于Gossip通信应用中,因为随机通信,两个Server之间并不存在有规律的心跳,因此很难找到一个适合的超时时间T,除非把T设置的非常大,但这样检测过程就会“迟缓”的无法忍受。

2.网络负载动态变化

还有一种情况是,随着网路负载的加大,Server心跳的接收时间可能会大于上限值T;但当网络压力减少时,心跳接收时间又会小于T,如果用一成不变的T来反映心跳状况,则会造成判断”迟缓“或误判。

3.心跳检测与结果的分离

并不是每个应用都只需要知道一个目标主机宕机与否的结果(true/false),即有很多应用需要自己解释心跳结果从而采取不同的处理动作。比如,如果目标主机3s内没有心跳,应用A解读为宕机并重试;而应用B则解读为目标”不活跃“,需要把任务委派到其他Server。也就是说,目标主机是否“宕机”应该由业务逻辑决定的,而不是简单的通过一个超时时间T决定,这就需要把心跳检测过程与对结果的解释相分离,从而为应用提供更好的灵活性。

Gossiper中采用的Φ失效检测方法

由失效检测的经典论文ThePhi accrual failure detectorhttp://vsedach.googlepages.com/HDY04.pdf)中的证明,分布式环境中,对主机的心跳统计,根据以往心跳间隔的经验值,可以由下面的方法判断主机是否宕机。

1.给定一个阀值Φ

2.在一定时间内,记录各个心跳间隔时间

3.对心跳的间隔值求指数分布(Exponentialdistribution)概率:

P= E ^ (-1 * (now - lastTimeStamp) / mean)E是对数2.71828...mean为此前的间隔时间平均值)

其表示,自上次统计以来,心跳到达时间将超过now- lastTimeStamp 的概率

4.计算φ= - log10 P

5.φ>Φ 时,就可以认为主机已经宕机了。

当然这可能会存在误判,误判的可能性如下:

Φ= 1, 1%

Φ= 2, 0.1%

Φ= 3, 0.01%

......

由此可见,当Φ= 8时,误判率已经很小了。cassandra中默认采用Φ= 8

下面有一个关于Phi失效检测算法的java实现。Cassandra中实现与此类似。

/**       java demo for phi failure detector*/import java.util.ArrayDeque;import java.util.Iterator;import java.util.concurrent.locks.Lock;import java.util.concurrent.locks.ReentrantLock;public class PhiAccrualFailureDetector {private static final int sampleWindowSize = 1000;private static int phiSuspectThreshold = 8;private SamplingWindow simpleingWindow = new SamplingWindow(sampleWindowSize);public PhiAccrualFailureDetector() {}public void addSample() {simpleingWindow.add(System.currentTimeMillis());}public void addSample(double sample) {simpleingWindow.add(sample);}public void interpret() {double phi = simpleingWindow.phi(System.currentTimeMillis());System.out.println("PHI = " + phi);if (phi > phiSuspectThreshold) {System.out.println("We are assuming the moniored machine is down!");} else {System.out.println("We are assuming the moniored machine is still running!");}}/** * @param args *                the command line arguments */public static void main(String[] args) {PhiAccrualFailureDetector pafd = new PhiAccrualFailureDetector();// first try with phi < phiSuspectThresholdfor (int i = 0; i < 10; i++) {pafd.addSample();try {Thread.sleep(10L);} catch (InterruptedException ex) {// no op}}try {Thread.sleep(500L);} catch (InterruptedException ex) {// no op}System.out.println(pafd.simpleingWindow.toString());pafd.interpret();// second try result phi > phiSuspectThresholdfor (int i = 0; i < 10; i++) {pafd.addSample();try {Thread.sleep(10L);} catch (InterruptedException ex) {// no op}}try {Thread.sleep(1500L);} catch (InterruptedException ex) {// no op}System.out.println(pafd.simpleingWindow.toString());pafd.interpret();}static class SamplingWindow {private final Lock lock = new ReentrantLock();private double lastTimeStamp = 0L;private StatisticDeque arrivalIntervals;SamplingWindow(int size) {arrivalIntervals = new StatisticDeque(size);}void add(double value) {lock.lock();try {double interval;if (lastTimeStamp > 0L) {interval = (value - lastTimeStamp);} else {interval = 1000 / 2;}lastTimeStamp = value;arrivalIntervals.add(interval);} finally {lock.unlock();}}double sum() {lock.lock();try {return arrivalIntervals.sum();} finally {lock.unlock();}}double sumOfDeviations() {lock.lock();try {return arrivalIntervals.sumOfDeviations();} finally {lock.unlock();}}double mean() {lock.lock();try {return arrivalIntervals.mean();} finally {lock.unlock();}}double variance() {lock.lock();try {return arrivalIntervals.variance();} finally {lock.unlock();}}double stdev() {lock.lock();try {return arrivalIntervals.stdev();} finally {lock.unlock();}}void clear() {lock.lock();try {arrivalIntervals.clear();} finally {lock.unlock();}}/** *  * p = E ^ (-1 * (tnow - lastTimeStamp) / mean) */double p(double t) {double mean = mean();double exponent = (-1) * (t) / mean;return Math.pow(Math.E, exponent);}double phi(long tnow) {int size = arrivalIntervals.size();double log = 0d;if (size > 0) {double t = tnow - lastTimeStamp;double probability = p(t);log = (-1) * Math.log10(probability);}return log;}@Overridepublic String toString() {StringBuilder s = new StringBuilder();for (Iterator<Double> it = arrivalIntervals.iterator(); it.hasNext();) {s.append(it.next()).append(" ");}return s.toString();}}static class StatisticDeque implements Iterable<Double> {private final int size;protected final ArrayDeque<Double> queue;public StatisticDeque(int size) {this.size = size;queue = new ArrayDeque<Double>(size);}public Iterator<Double> iterator() {return queue.iterator();}public int size() {return queue.size();}public void clear() {queue.clear();}public void add(double o) {if (size == queue.size()) {queue.remove();}queue.add(o);}public double sum() {double sum = 0D;for (Double interval : this) {sum += interval;}return sum;}public double sumOfDeviations() {double sumOfDeviations = 0D;double mean = mean();for (Double interval : this) {double d = interval - mean;sumOfDeviations += d * d;}return sumOfDeviations;}public double mean() {return sum() / size();}public double variance() {return sumOfDeviations() / size();}public double stdev() {return Math.sqrt(variance());}}}



原创粉丝点击