算法导论-第19章-二项堆

来源:互联网 发布:联通首选网络类型 编辑:程序博客网 时间:2024/05/16 07:18

一、概念

1.可合并堆

(1)可合并堆应支持的操作

MAKE-HEAP()
INSERT(H, x)
MINIMUM(H)
EXTRACT-MIN(H)
UNION(H1, H2)
(2)二项堆是一种可合并堆

2.二项树

(1)二项树的定义

二项树是Bk一种递归定义的有序树
B0只包含一个结点
Bk(k>0)由两棵二项树B|k-1连接而成,其中一棵作为另一棵的左孩子

(2)二项树Bk的性质

a.共有2^k个结点
b.树的高度为k
c.在深度i处恰有C(i, k)个结点
d.树的度数为k,它大于任何其它结点的度;并且,如果根的子女从左到右编号为k-1, k-1, ……, 0,子女i是子树Bi的根

(3)二项树的结构

用左孩子用兄弟的方法表示二项树

(4)二项树的举例



3.二项堆

(1)二项堆的定义与性质

(2)二项堆的结构

(3)二项堆提供的操作


二、代码

Binomial_Heap.h

#include <iostream>  using namespace std;    //二项堆结点结构  struct node  {      int key;//关键字      int data;//卫星数据      node *p;//指向父结点的指针,父或左兄      node *child;//指向左孩子的指针      node *sibling;//指向右兄弟的指针      int degree;//度      //初始化      node(int n, node *nil):key(n),p(nil),child(nil),sibling(nil),degree(0){}  };      //二项堆结构  class Binomial_Heap  {  public:      node *head;      node *nil;      //构造函数      Binomial_Heap(){nil = new node(-1, nil);}      Binomial_Heap(node *NIL){nil = NIL;}      //19.2      void Make_Binomial_Heap();      node* Binomial_Heap_Minimum();      void Binomial_Link(node *y, node *z);      node *Binomial_Heap_Merge(Binomial_Heap *H1, Binomial_Heap *H2);      void Binomial_Heap_Union(Binomial_Heap *H2);      void Binomial_Heap_Insert(node *x);      node* Binomial_Heap_Extract_Min();      void Binomial_Heap_Decrease_Key(node *x, int k);      void Binomial_Heap_Delete(node *x);  };  //构造一个空的二项堆void Binomial_Heap::Make_Binomial_Heap(){//初始化对象head = nil;}//寻找最小关键字node* Binomial_Heap::Binomial_Heap_Minimum(){//最小关键字一定位于某个二项树的根结点上node *x = head, *y = nil;int min = 0x7fffffff;//遍历每个二项树的根结点while(x != nil){//找出最小值if(x->key < min){min = x->key;y = x;}x = x->sibling;}return y;}//将以结点y为根的树与以结点z为根的树连接起来,使z成为y的父结点void Binomial_Heap::Binomial_Link(node *y, node *z){//只是按照定义修改指针y->p = z;y->sibling = z->child;z->child = y;//增加度z->degree++;}//将H1和H2的根表合并成一个按度数的单调递增次序排列的链表//不带头结点的单调链表的合并,返回合并后的头,不需要解释node *Binomial_Heap::Binomial_Heap_Merge(Binomial_Heap *H1, Binomial_Heap *H2){node *l1 = H1->head, *l2 = H2->head, *ret = nil, *c = ret, *temp;while(l1 != nil && l2 != nil){if(l1->degree <= l2->degree)temp = l1;elsetemp = l2;if(ret == nil){ret = temp;c = ret;}else{c->sibling = temp;c = temp;}if(l1 == temp)l1 = l1->sibling;else l2 = l2->sibling;}if(l1 != nil){if(ret == nil)ret = l1;elsec->sibling = l1;}else{if(ret == nil)ret = l2;elsec->sibling = l2;}delete H2;return ret;}//将两个二项堆合并void Binomial_Heap::Binomial_Heap_Union(Binomial_Heap *H2){//H是合并结点,用于输出Binomial_Heap *H = new Binomial_Heap(nil);H->Make_Binomial_Heap();Binomial_Heap *H1 = this;//将H1和H2的根表合并成一个按度数的单调递增次序排列的链表,并放入H中H->head = Binomial_Heap_Merge(H1, H2);//free the objects H1 and H2 but not the lists they point to//如果H为空,直接返回if(H->head == nil)return;//将相等度数的根连接起来,直到每个度数至多一个根时为止//x指向当前被检查的根,prev-x指向x的前面一个根,next-x指向x的后一个根node *x = H->head, *prev_x = nil, *next_x = x->sibling;//根据x和next-x的度数来确定是否把两个连接起来while(next_x != nil){//情况1:度数不相等if(x->degree != next_x->degree || //情况2:x为具有相同度数的三个根中的第一个(next_x->sibling != nil && next_x->sibling->degree == x->degree)){//将指针指向下一个位置prev_x = x;x = next_x;}//情况3:x->key较小,将next-x连接到x上,将next-x从根表中去掉else if(x->key <= next_x->key){//去掉next-xx->sibling = next_x->sibling;//使next-x成为x的左孩子Binomial_Link(next_x, x);}//情况4:next-x->key关键字较小,x被连接到next-x上else{//将x从根表中去掉if(prev_x == nil)//x是根表中的第一个根H->head = next_x;else//x不是根表中的第一个根prev_x->sibling = next_x;//使x成为next-x的最左孩子Binomial_Link(x, next_x);//更新x以进入下一轮迭代x = next_x;}next_x = x->sibling;}head = H->head;}//将结点x插入到二项堆H中void Binomial_Heap::Binomial_Heap_Insert(node *x){//构造一个临时的二项堆HH,只包含一个结点xBinomial_Heap *HH = new Binomial_Heap;HH->Make_Binomial_Heap();x->p = nil;x->child = nil;x->sibling = nil;x->degree = 0;HH->head = x;//将H与HH合并,同时释放HHBinomial_Heap_Union(HH);}//抽取具有最小关键字的结点node* Binomial_Heap::Binomial_Heap_Extract_Min(){//最小关键字一定位于某个二项树的根结点上node *x = head, *y = nil, *ret;int min;if(x == nil){//cout<<"empty"<<endl;return nil;}min = x->key;//1.find the root x with the minimum key in the root list of H, //遍历每个二项树的根结点,为了删除这个结点,还需要知道x的前一个根结点while(x->sibling != nil){//找出最小值if(x->sibling->key < min){min = x->sibling->key;y = x;}x = x->sibling;}ret = x;//1.and remove x from the root list of H//删除结点分为两个情况,结点是二项堆中的第一个树,删除结点后,结点的child保存到temp中node *temp = NULL;if(y == nil){x = head;temp = x->child;head = x->sibling;}//结点不是二项堆中的第一个树else{x = y->sibling;y->sibling = x->sibling;temp = x->child;}//2.//设待删除结点是二项树T的根,那么删除这个结点后,T变成了一个二项堆Binomial_Heap *HH = new Binomial_Heap(nil);HH->Make_Binomial_Heap();//3.reverse the order of the linked list of x'childern,setting the p field of each child to NIL, and set head[HH] to point to the head of the resulting list//正常情况下,二项堆中的树的度从小到大排。此时HH中的树的度是从大到排的,因此要对HH中的树做一个逆序node *p;while(temp != nil){p = temp->sibling;temp->sibling = HH->head;HH->head = temp;temp->p = nil;temp = p;}//4.//原二项堆H删除二项树T后成为新二项堆H,二项树T删除根结点后变成新二项堆HH//将H和HH合并Binomial_Heap_Union(HH);return x;}//将二项堆H中的某一结点x的关键字减小为一个新值kvoid Binomial_Heap::Binomial_Heap_Decrease_Key(node *x, int k){//引发错误if(k > x->key){cout<<"new key is greater than current key"<<endl;return ;}//与二叉最小堆中相同的方式来减小一个关键字,使该关键字在堆中冒泡上升x->key = k;node *y = x, *z = y->p;while(z != nil && y->key < z->key){swap(y->key, z->key);swap(y->data, z->data);y = z;z = y->p;}}//删除一个关键字void Binomial_Heap::Binomial_Heap_Delete(node *x){//将值变为最小,升到堆顶Binomial_Heap_Decrease_Key(x, -0x7fffffff);//删除堆顶元素Binomial_Heap_Extract_Min();}


main.cpp

#include <iostream>using namespace std;#include "Binomial_Heap.h"int main(){char ch;int n;//生成一个空的二项堆Binomial_Heap *H = new Binomial_Heap;H->Make_Binomial_Heap();//各种测试while(cin>>ch){switch (ch){case 'I'://插入一个元素{cin>>n;node *x = new node(n, H->nil);H->Binomial_Heap_Insert(x);break;}case 'M'://返回最小值{node *ret = H->Binomial_Heap_Minimum();if(ret == H->nil)cout<<"empty"<<endl;elsecout<<ret->key<<endl;break;}case 'K'://更改某个关键字的值,使之变小{//因为没有Search函数,只能对最小值的结点进行测试node *ret = H->Binomial_Heap_Minimum();if(ret == H->nil)cout<<"empty"<<endl;else{cin>>n;H->Binomial_Heap_Decrease_Key(ret, n);}break;}case 'E'://提取关键字最小的值并从堆中删除{H->Binomial_Heap_Extract_Min();break;}case 'D'://删除某个结点{node *ret = H->Binomial_Heap_Minimum();if(ret == H->nil)cout<<"empty"<<endl;elseH->Binomial_Heap_Delete(ret);break;}}}return 0;}



三、练习

19.1二项树与二项堆

19.1-1x不是根,则degree[sibling[x]] < degree[x]x是根,则degree[sibling[x]] > degree[x]19.1-2degree[p[x]] > degree[x]

19.2对二项堆的操作

19.2-1

木有伪代码,直接看代码

//将H1和H2的根表合并成一个按度数的单调递增次序排列的链表//不带头结点的单调链表的合并,返回合并后的头,不需要解释node *Binomial_Heap::Binomial_Heap_Merge(Binomial_Heap *H1, Binomial_Heap *H2){node *l1 = H1->head, *l2 = H2->head, *ret = nil, *c = ret, *temp;while(l1 != nil && l2 != nil){if(l1->degree <= l2->degree)temp = l1;elsetemp = l2;if(ret == nil){ret = temp;c = ret;}else{c->sibling = temp;c = temp;}if(l1 == temp)l1 = l1->sibling;else l2 = l2->sibling;}if(l1 != nil){if(ret == nil)ret = l1;elsec->sibling = l1;}else{if(ret == nil)ret = l2;elsec->sibling = l2;}delete H2;return ret;}

19.2-2


19.2-3


19.2-5

如果可以将关键字的值置为正无穷,BINOMIAL-HEAP-MINIMUM将无法区分二项堆为空和最小关键字为无穷大这两种情况,只需在返回加以区分即可

BINOMIAL-HEAP-MINIMUM(H)1    y <- NIL2    x <- head[H]3    min <- 0x7fffffff4    while x != NIL5        do if key[x] < min6                then min <- key[x]7                         y <- x8              x <- sibling[x]9    if min = 0x7fffffff and head[H] != NIL10       then return head[H]11   return y

19.2-6

不需要表示-0x7fffffff,只要比最小值小就可以了

BINOMIAL-HEAP-DELETE(H)1    y <- BINOMIAL-HEAP-MINIMUM(H)2    BINOMIAL-HEAP-DECREASE-KEY(H, x, key[y]-1)3    BINOMIAL-HEAP-EXTRACT-MIN(H)


19.2-7

将一个二项堆H与一个二进制数x对应,对应方式x=func(H)为:

若H中有一棵二项树的根的度数为k,则将x的第k为置1。

(1)令一个二项堆H1有x1=func(H1),在H1上插入一个结点后变为H2,有x2=func(H2),则x2=x1+1

(2)令两个二项堆H1、H2,H1、H2合并后为二项堆H3,,有x1=func(H1)、x2=func(H2)、x3=func(H3),则x1+x2=x3


19.2-8

待解决

 

四、思考题

19-1 2-3-4堆

求思路可怜

19-2 采用二项堆的最小生成树算法

见算法导论 19-2 采用二项堆的最小生成树算法