图中最短路径算法

来源:互联网 发布:怎么查看计算机端口80 编辑:程序博客网 时间:2024/05/17 22:55

Dijkstra

Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。
时间复杂度
我们可以用大O符号将Dijkstra算法的运行时间表示为边数m和顶点数n的函数。
Dijkstra算法最简单的实现方法是用一个链表或者数组来存储所有顶点的集合Q,所以搜索Q中最小元素的运算(Extract-Min(Q))只需要线性搜索Q中的所有元素。这样的话算法的运行时间是O(n2)。
对于边数少于n2稀疏图来说,我们可以用邻接表来更有效的实现Dijkstra算法。同时需要将一个二叉堆或者斐波纳契堆用作优先队列来寻找最小的顶点(Extract-Min)。当用到二叉堆的时候,算法所需的时间为O((m+n)log n),斐波纳契堆能稍微提高一些性能,让算法运行时间达到O(m + n log n)。
相关问题和算法
在Dijkstra算法的基础上作一些改动,可以扩展其功能。例如,有时希望在求得最短路径的基础上再列出一些次短的路径。为此,可先在原图上计算出最短路径,然后从图中删去该路径中的某一条边,在余下的子图中重新计算最短路径。对于原最短路径中的每一条边,均可求得一条删去该边后子图的最短路径,这些路径经排序后即为原图的一系列次短路径。
OSPF(open shortest path first, 开放最短路径优先)算法是Dijkstra算法在网络路由中的一个具体实现。

Bellman-Ford

Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题,而Dijkstra算法只能处理边权非负的问题

Bellman-Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题。对于给定的带权(有向或无向)图 G=(V,E),其源点为s,加权函数 w是 边集 E 的映射。对图G运行Bellman-Ford算法的结果是一个布尔值,表明图中是否存在着一个从源点s可达的负权回路。若不存在这样的回路,算法将给出从源点s到 图G的任意顶点v的最短路径d[v]。

Bellman-Ford算法流程分为三个阶段:
(1)    初始化:将除源点外的所有顶点的最短距离估计值 d[v] ←+∞, d[s] ←0;

(2)    迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)

(3)    检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 d[v]中。


算法描述如下:

Bellman-Ford(G,w,s) :boolean   //图G ,边集 函数 w ,s为源点

1        for each vertex v ∈ V(G) do        //初始化 1阶段

2            d[v] ←+∞

3        d[s] ←0;                             //1阶段结束

4        for i=1 to |v|-1 do               //2阶段开始,双重循环。

5           for each edge(u,v) ∈E(G) do //边集数组要用到,穷举每条边。

6              If d[v]> d[u]+ w(u,v) then      //松弛判断

7                 d[v]=d[u]+w(u,v)               //松弛操作   2阶段结束

8        for each edge(u,v) ∈E(G) do

9            If d[v]> d[u]+ w(u,v) then

10            Exit false

11    Exit true

SPFA

SPFA(Shortest Path Faster Algorithm):Bellman-ford算法的改进。我们用数组d记录每个结点的最短路径估计值,而且用邻接表来存储图G。我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止。
期望的时间复杂度O(ke), 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2。
实现方法:建立一个队列,初始时队列里只有起始点,在建立一个表格记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该点到他本身的路径赋为0)。然后执行松弛操作,用队列里有的点去刷新起始点到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后。重复执行直到队列为空
判断有无负环:如果某个点进入队列的次数超过N次则存在负环(SPFA无法处理带负环的图)

主要来自:百度百科及http://blog.csdn.net/logic_nut/archive/2009/07/31/4396518.aspx