Linux I/O Block--递交I/O请求

来源:互联网 发布:淘宝网孕妇裤 编辑:程序博客网 时间:2024/05/15 12:29

      在通用块层中,bio用来描述单一的I/O请求,它记录了一次I/O操作所必需的相关信息,如用于I/O操作的数据缓存位置,I/O操作的块设备起始扇区,是读操作还是写操作等等。struct bio的定义如下

struct bio {sector_tbi_sector;/* device address in 512 byte   sectors */struct bio*bi_next;/* request queue link */struct block_device*bi_bdev;unsigned longbi_flags;/* status, command, etc */unsigned longbi_rw;/* bottom bits READ/WRITE, * top bits priority */unsigned shortbi_vcnt;/* how many bio_vec's */unsigned shortbi_idx;/* current index into bvl_vec *//* Number of segments in this BIO after * physical address coalescing is performed. */unsigned intbi_phys_segments;unsigned intbi_size;/* residual I/O count *//* * To keep track of the max segment size, we account for the * sizes of the first and last mergeable segments in this bio. */unsigned intbi_seg_front_size;unsigned intbi_seg_back_size;unsigned intbi_max_vecs;/* max bvl_vecs we can hold */unsigned intbi_comp_cpu;/* completion CPU */atomic_tbi_cnt;/* pin count */struct bio_vec*bi_io_vec;/* the actual vec list */bio_end_io_t*bi_end_io;void*bi_private;#if defined(CONFIG_BLK_DEV_INTEGRITY)struct bio_integrity_payload *bi_integrity;  /* data integrity */#endifbio_destructor_t*bi_destructor;/* destructor *//* * We can inline a number of vecs at the end of the bio, to avoid * double allocations for a small number of bio_vecs. This member * MUST obviously be kept at the very end of the bio. */struct bio_vecbi_inline_vecs[0];};


bi_sector:该I/O操作的起始扇区号

bi_rw:指明了读写方向

bi_vcnt:该I/O操作中涉及到了多少个缓存向量,每个缓存向量由[page,offset,len]来描述

bi_idx:指示当前的缓存向量

bi_io_vec:缓存向量数组

缓存向量的定义:

struct bio_vec {struct page*bv_page;unsigned intbv_len;unsigned intbv_offset;};


 

struct request用于描述提交给块设备的I/O请求,bio会动态地添加进request,因此一个request往往会包含若干相邻的bio。

struct request {struct list_head queuelist;struct call_single_data csd;int cpu;struct request_queue *q;unsigned int cmd_flags;enum rq_cmd_type_bits cmd_type;unsigned long atomic_flags;/* the following two fields are internal, NEVER access directly */sector_t __sector;/* sector cursor */unsigned int __data_len;/* total data len */struct bio *bio;struct bio *biotail;struct hlist_node hash;/* merge hash *//* * The rb_node is only used inside the io scheduler, requests * are pruned when moved to the dispatch queue. So let the * completion_data share space with the rb_node. */union {struct rb_node rb_node;/* sort/lookup */void *completion_data;};/* * two pointers are available for the IO schedulers, if they need * more they have to dynamically allocate it. */void *elevator_private;void *elevator_private2;struct gendisk *rq_disk;unsigned long start_time;/* Number of scatter-gather DMA addr+len pairs after * physical address coalescing is performed. */unsigned short nr_phys_segments;unsigned short ioprio;void *special;/* opaque pointer available for LLD use */char *buffer;/* kaddr of the current segment if available */int tag;int errors;int ref_count;/* * when request is used as a packet command carrier */unsigned short cmd_len;unsigned char __cmd[BLK_MAX_CDB];unsigned char *cmd;unsigned int extra_len;/* length of alignment and padding */unsigned int sense_len;unsigned int resid_len;/* residual count */void *sense;unsigned long deadline;struct list_head timeout_list;unsigned int timeout;int retries;/* * completion callback. */rq_end_io_fn *end_io;void *end_io_data;/* for bidi */struct request *next_rq;};

queuelist:用于将request链入请求队列的链表元素

q:指向所属的请求队列

__sector:下一个要传输的bio的起始扇区号

__data_len:request要传输的数据字节数

bio,biotail:用于维护request中的bio链表

 

在之前介绍的gendisk结构中,可以看到每个块设备(或分区)都对应了一个request_queue的结构,该结构用来容纳request,并且包含了相应的递交request以及I/O调度的方法

递交一个bio的主要工作是从generic_make_request()函数开始的,我们以此为入口来分析一个bio的递交过程。在每个进程的task_struct中,都包含有两个变量----struct bio *bio_list, **bio_tail,generic_make_request()的主要工作就是用这两个变量来维护当前待添加的bio链表,实际的提交操作会由generic_make_request()调用__generic_make_request()函数完成。而在__generic_make_request()中,会调用到queue_list中定义的make_request_fn函数,也就是特定于设备的提交请求函数来完成后续的工作。在这里便会有一些问题,大部分设备的make_request_fn都可以直接定义为内核实现的__make_request函数,而一些设备需要使用自己的make_request_fn,而自行实现的make_request_fn有可能会递归调用gerneric_make_request(),由于内核的堆栈十分有限,因此在generic_make_request()的实现中,玩了一些小把戏,使得递归的深度不会超过一层。我们注意到bio_tail是一个二级指针,这个值最初是NULL,当有bio添加进来,bio_tail将会指向bio->bi_next(如果bio全都递交上去了,则bio_tail将会指向bio_list),也就是说除了第一次调用外,其他每次递归调用generic_make_request()函数都会出现bio_tail不为NULL的情形,因此当bio_tail不为NULL时,则只将bio添加到由bio_list和bio_tail维护的链表中,然后直接返回,而不调用__generic_make_request(),这样便防止了多重递归的产生

void generic_make_request(struct bio *bio){if (current->bio_tail) {//current->bio_tail不为空则表明有bio正在提交,也就是说是处于递归调用/* make_request is active */bio->bi_next = NULL;/*这里current->tail有两种情况,当current的bio链表为空时,bio_tail指向的是bio_list当current的bio链表不为空时,bio_tail指向的是最后一个bio的bi_next指针,因此这句的实际作用就是将bio添加到了current的bio链表的尾部*/*(current->bio_tail) = bio;current->bio_tail = &bio->bi_next;/*这里直接返回,遍历并且提交bio的工作永远都是交给最先调用的generic_make_request来处理的,避免了多重递归*/return;}/* following loop may be a bit non-obvious, and so deserves some * explanation. * Before entering the loop, bio->bi_next is NULL (as all callers * ensure that) so we have a list with a single bio. * We pretend that we have just taken it off a longer list, so * we assign bio_list to the next (which is NULL) and bio_tail * to &bio_list, thus initialising the bio_list of new bios to be * added.  __generic_make_request may indeed add some more bios * through a recursive call to generic_make_request.  If it * did, we find a non-NULL value in bio_list and re-enter the loop * from the top.  In this case we really did just take the bio * of the top of the list (no pretending) and so fixup bio_list and * bio_tail or bi_next, and call into __generic_make_request again. * * The loop was structured like this to make only one call to * __generic_make_request (which is important as it is large and * inlined) and to keep the structure simple. */BUG_ON(bio->bi_next);do {current->bio_list = bio->bi_next;//这里取current的待提交bio链表的下一个bioif (bio->bi_next == NULL)//bi_next为空,也就是说待提交链表已经空了,只剩下最后一个bio了current->bio_tail = ¤t->bio_list;//bio_tail指向bio_listelsebio->bi_next = NULL;//否则将bio提取出来__generic_make_request(bio);//提交biobio = current->bio_list;//取新的待提交bio} while (bio);current->bio_tail = NULL; /* deactivate */}



__generic_make_request()首先由bio对应的block_device获取等待队列q,然后要检查对应的设备是不是分区,如果是分区的话要将扇区地址进行重新计算,最后调用make_request_fn完成bio的递交

static inline void __generic_make_request(struct bio *bio){struct request_queue *q;sector_t old_sector;int ret, nr_sectors = bio_sectors(bio);//提取bio的大小,以扇区为单位dev_t old_dev;int err = -EIO;might_sleep();//这里检查bio的传输起始扇区是否超过设备的最大扇区,并且两者之间的差不能小于nr_sectorif (bio_check_eod(bio, nr_sectors))goto end_io;/* * Resolve the mapping until finished. (drivers are * still free to implement/resolve their own stacking * by explicitly returning 0) * * NOTE: we don't repeat the blk_size check for each new device. * Stacking drivers are expected to know what they are doing. */old_sector = -1;old_dev = 0;do {char b[BDEVNAME_SIZE];q = bdev_get_queue(bio->bi_bdev);//获取对应设备的请求队列if (unlikely(!q)) {printk(KERN_ERR       "generic_make_request: Trying to access ""nonexistent block-device %s (%Lu)\n",bdevname(bio->bi_bdev, b),(long long) bio->bi_sector);goto end_io;}/*下面做一些必要的检查*/if (unlikely(!bio_rw_flagged(bio, BIO_RW_DISCARD) &&     nr_sectors > queue_max_hw_sectors(q))) {printk(KERN_ERR "bio too big device %s (%u > %u)\n",       bdevname(bio->bi_bdev, b),       bio_sectors(bio),       queue_max_hw_sectors(q));goto end_io;}if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))goto end_io;if (should_fail_request(bio))goto end_io;/* * If this device has partitions, remap block n * of partition p to block n+start(p) of the disk. */ //如果bio指定的是一个分区,则传输点要重新进行计算blk_partition_remap(bio);if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))goto end_io;if (old_sector != -1)trace_block_remap(q, bio, old_dev, old_sector);old_sector = bio->bi_sector;old_dev = bio->bi_bdev->bd_dev;if (bio_check_eod(bio, nr_sectors))goto end_io;if (bio_rw_flagged(bio, BIO_RW_DISCARD) &&    !blk_queue_discard(q)) {err = -EOPNOTSUPP;goto end_io;}trace_block_bio_queue(q, bio);ret = q->make_request_fn(q, bio);//这里是关键,调用请求队列中的make_request_fn函数处理请求} while (ret);return;end_io:bio_endio(bio, err);}

辅助函数blk_partition_remap():

static inline void blk_partition_remap(struct bio *bio){struct block_device *bdev = bio->bi_bdev;/*首先要保证传输的大小不能小于1个扇区并且bdev确实是分区*/if (bio_sectors(bio) && bdev != bdev->bd_contains) {struct hd_struct *p = bdev->bd_part;//获取分区信息bio->bi_sector += p->start_sect;//在传输起点的原基础上加上分区的起始扇区号bio->bi_bdev = bdev->bd_contains;//将bio的bdev置为主设备trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,    bdev->bd_dev,    bio->bi_sector - p->start_sect);}}

可以看到这里将bio的参考对象设置为了主设备,而不是分区,因此对应的扇区起始号也要计算为扇区的绝对值。

大多数的make_request_fn函数都可以直接定义为__make_request(),我们通过这个函数来分析递交bio的关键操作

static int __make_request(struct request_queue *q, struct bio *bio){struct request *req;int el_ret;unsigned int bytes = bio->bi_size;const unsigned short prio = bio_prio(bio);const bool sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);const bool unplug = bio_rw_flagged(bio, BIO_RW_UNPLUG);const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK;int rw_flags;/*如果BIO_RW_BARRIER被置位(表示必须得让请求队列中的所有bio传递完毕才处理自己),  但是不支持hardbarrier,不能进行bio的提交*/if (bio_rw_flagged(bio, BIO_RW_BARRIER) &&    (q->next_ordered == QUEUE_ORDERED_NONE)) {bio_endio(bio, -EOPNOTSUPP);return 0;}/* * low level driver can indicate that it wants pages above a * certain limit bounced to low memory (ie for highmem, or even * ISA dma in theory) */blk_queue_bounce(q, &bio);spin_lock_irq(q->queue_lock);//如果BIO_RW_BARRIER被置位或者请求队列为空,则情况比较简单,不用进行bio的合并,跳转到get_rq处处理if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)) || elv_queue_empty(q))goto get_rq;/**请求队列不为空**//*elv_merge()试图寻找一个已存在的request,将bio并入其中*/el_ret = elv_merge(q, &req, bio);switch (el_ret) {case ELEVATOR_BACK_MERGE:BUG_ON(!rq_mergeable(req));/*相关检查*/if (!ll_back_merge_fn(q, req, bio))break;trace_block_bio_backmerge(q, bio);if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)blk_rq_set_mixed_merge(req);/*这里将bio插入到request尾部*/req->biotail->bi_next = bio;req->biotail = bio;req->__data_len += bytes;req->ioprio = ioprio_best(req->ioprio, prio);if (!blk_rq_cpu_valid(req))req->cpu = bio->bi_comp_cpu;drive_stat_acct(req, 0);if (!attempt_back_merge(q, req))elv_merged_request(q, req, el_ret);goto out;case ELEVATOR_FRONT_MERGE:BUG_ON(!rq_mergeable(req));if (!ll_front_merge_fn(q, req, bio))break;trace_block_bio_frontmerge(q, bio);if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {blk_rq_set_mixed_merge(req);req->cmd_flags &= ~REQ_FAILFAST_MASK;req->cmd_flags |= ff;}/*这里将bio插入到request的头部*/bio->bi_next = req->bio;req->bio = bio;/* * may not be valid. if the low level driver said * it didn't need a bounce buffer then it better * not touch req->buffer either... */req->buffer = bio_data(bio);req->__sector = bio->bi_sector;req->__data_len += bytes;req->ioprio = ioprio_best(req->ioprio, prio);if (!blk_rq_cpu_valid(req))req->cpu = bio->bi_comp_cpu;drive_stat_acct(req, 0);if (!attempt_front_merge(q, req))elv_merged_request(q, req, el_ret);goto out;/* ELV_NO_MERGE: elevator says don't/can't merge. */default:;}get_rq:/**下面的代码对应请求队列为空的情况,需要先分配一个request,再将bio插入***//* * This sync check and mask will be re-done in init_request_from_bio(), * but we need to set it earlier to expose the sync flag to the * rq allocator and io schedulers. */rw_flags = bio_data_dir(bio);//确定读写标识if (sync)rw_flags |= REQ_RW_SYNC;/* * Grab a free request. This is might sleep but can not fail. * Returns with the queue unlocked. */req = get_request_wait(q, rw_flags, bio);//分配一个新的request/* * After dropping the lock and possibly sleeping here, our request * may now be mergeable after it had proven unmergeable (above). * We don't worry about that case for efficiency. It won't happen * often, and the elevators are able to handle it. */ //根据bio初始化新分配的request,并将bio插入到request中init_request_from_bio(req, bio);spin_lock_irq(q->queue_lock);if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||    bio_flagged(bio, BIO_CPU_AFFINE))req->cpu = blk_cpu_to_group(smp_processor_id());if (queue_should_plug(q) && elv_queue_empty(q))blk_plug_device(q);add_request(q, req);//将request插入到请求队列out:if (unplug || !queue_should_plug(q))__generic_unplug_device(q);spin_unlock_irq(q->queue_lock);return 0;}


elv_merge()是执行合并的关键所在,执行完后会有三种情况:

1.bio添加到了一个request的bio链表尾部

2.bio添加到了一个request的bio链表首部

3.未能找到一个request可以添加,将重新分配一个request

int elv_merge(struct request_queue *q, struct request **req, struct bio *bio){struct elevator_queue *e = q->elevator;struct request *__rq;int ret;/* * First try one-hit cache. *///last_merge指向了最近进行合并操作的request,最先试图将bio合并到该request中if (q->last_merge) {ret = elv_try_merge(q->last_merge, bio);if (ret != ELEVATOR_NO_MERGE) {*req = q->last_merge;return ret;}}if (blk_queue_nomerges(q))//请求队列不允许合并请求,则返回NO_MERGEreturn ELEVATOR_NO_MERGE;/* * See if our hash lookup can find a potential backmerge. */ //根据bio的起始扇区号,通过rq的哈希表寻找一个request,可以将bio合并到request的尾部__rq = elv_rqhash_find(q, bio->bi_sector);if (__rq && elv_rq_merge_ok(__rq, bio)) {*req = __rq;return ELEVATOR_BACK_MERGE;}/*如果以上的方法不成功,则调用特定于io调度器的elevator_merge_fn函数寻找一个合适的request*/if (e->ops->elevator_merge_fn)return e->ops->elevator_merge_fn(q, req, bio);return ELEVATOR_NO_MERGE;}

elevator_merge_fn是特定于I/O调度器的方式,至此,递交I/O请求的通用层部分也就分析完了。