线性规划与网络流24题 3最小路径覆盖问题 NEFU 481

来源:互联网 发布:新公司搜索引擎优化 编辑:程序博客网 时间:2024/06/18 05:42

最小路径覆盖问题

Time Limit 1000ms

Memory Limit 65536K

description

    给定有向图G=(V,E)。设P 是G 的一个简单路(顶点不相交)的集合。如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖。P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别地,可以为0。G 的最小路径覆盖是G 的所含路径条数最少的路径覆盖。设计一个有效算法求一个有向无环图G 的最小路径覆盖。提示:设V={1,2,...; ,n},构造网络G1=(V1,E1)如下:
每条边的容量均为1。求网络G1的(x0 , y0 )最大流。对于给定的给定有向无环图G,编程找出G的一个最小路径覆盖。

input

多组数据输入.每组输入第1 行有2个正整数n<=200和m。n是给定有向无环图G 的顶点数,m是G 的边数。接下来的m行,每行有2 个正整数i和j,表示一条有向边(i,j)。

output

每组输出最少路径数。

sample_input

11 121 21 31 42 53 64 75 86 97 108 119 1110 11

sample_output

3
------------------------------------------------------------------------------------------------------------------------------------------------------------------------

分析(引用 BYvoid大牛的分析):
有向无环图最小路径覆盖,可以转化成二分图最大匹配问题,从而用最大流解决。
建模方法:
构造二分图,把原图每个顶点 i拆分成二分图X,Y集合中的两个顶点 Xi和 Yi。对于原图中存在的每条边(i,j),在二分图
中连接边(Xi,Yj)。然后把二分图最大匹配模型转化为网络流模型,求网络最大流。
最小路径覆盖的条数,就是原图顶点数,减去二分图最大匹配数。沿着匹配边查找,就是一个路径上的点,输出所有路径即可。
建模分析:
对于一个路径覆盖,有如下性质:
1、每个顶点属于且只属于一个路径。
2、路径上除终点外,从每个顶点出发只有一条边指向路径上的另一顶点。
所以我们可以把每个顶点理解成两个顶点,一个是出发,一个是目标,建立二分图模型。该二分图的任何一个匹配方案,都
对应了一个路径覆盖方案。如果匹配数为0,那么显然路径数=顶点数。每增加一条匹配边,那么路径覆盖数就减少一个,所以路
径数=顶点数 - 匹配数。要想使路径数最少,则应最大化匹配数,所以要求二分图的最大匹配。
注意,此建模方法求最小路径覆盖仅适用于有向无环图,如果有环或是无向图,那么有可能求出的一些环覆盖,而不是路径
覆盖。

------------------------------------------------------------------------------------------------------------------------------------------------------------------------

#include <iostream>#include <cstdio>using namespace std;const int OO=1e9;//无穷大const int maxm=1111111;//边的最大数量,为原图的两倍const int maxn=11111;//点的最大数量int node,src,dest,edge;//node节点数,src源点,dest汇点,edge边数int head[maxn],work[maxn],dis[maxn],q[maxn];//head链表头,work临时表头,dis计算距离struct edgenode{    int to;//边的指向    int flow;//边的容量    int next;//链表的下一条边} edges[maxm];//初始化链表及图的信息void prepare(int _node,int _src,int _dest){    node=_node;    src=_src;    dest=_dest;    for (int i=0; i<node; i++) head[i]=-1;    edge=0;}//添加一条从u到v容量为c的边void addedge(int u,int v,int c){    edges[edge].flow=c;    edges[edge].to=v;    edges[edge].next=head[u];    head[u]=edge++;    edges[edge].flow=0;    edges[edge].to=u;    edges[edge].next=head[v];    head[v]=edge++;}//广搜计算出每个点与源点的最短距离,如果不能到达汇点说明算法结束bool Dinic_bfs(){    int u,v,r=0;    for (int i=0; i<node; i++) dis[i]=-1;    q[r++]=src;    dis[src]=0;    for (int l=0; l<r; l++)    {        u=q[l];        for (int i=head[u]; i!=-1; i=edges[i].next)        {            v=edges[i].to;            if (edges[i].flow&&dis[v]<0)            {                //这条边必须要有剩余流量                q[r++]=v;                dis[v]=dis[u]+1;                if (v==dest) return true;            }        }    }    return false;}//寻找可行流的增广路算法,按节点的距离来找,加快速度int Dinic_dfs(int u,int exp){    int v,tmp;    if (u==dest) return exp;    //work是临时链表头,这里用 i引用它,这样寻找过的边不再寻找    for (int &i=work[u]; i!=-1; i=edges[i].next)    {        v=edges[i].to;        if (edges[i].flow&&dis[v]==dis[u]+1&&(tmp=Dinic_dfs(v,min(exp,edges[i].flow)))>0)        {            edges[i].flow-=tmp;            edges[i^1].flow+=tmp;            //正反向边容量改变            return tmp;        }    }    return 0;}//求最大流直到没有可行流int Dinic_flow(){    int ret=0,tmp;    while (Dinic_bfs())    {        for (int i=0; i<node; i++) work[i]=head[i];        while ( tmp=Dinic_dfs(src,OO) ) ret+=tmp;    }    return ret;}int main(){    int n,m,ans,maxflow;    while (scanf("%d%d",&n,&m)!=EOF)    {        prepare(n+n+2,0,n+n+1);        for (int i=1; i<=m; i++)        {            int x,y;            cin>>x>>y;            addedge(x,y+n,1);        }        for (int i=1; i<=n; i++)        {            addedge(src,i,1);            addedge(i+n,dest,1);        }        maxflow=Dinic_flow();        ans=n-maxflow;        printf("%d\n",ans);    }    return 0;}




原创粉丝点击