STM32定时器输出带有死区时间的PWM波形

来源:互联网 发布:中润国盈集团 知乎 编辑:程序博客网 时间:2024/06/05 18:32

要求得到下列波形,死区时间为1us,CH1,CH2,CH3之间的相位差为3us,频率为50KHz



main.c

/*********************************************    标题:定时器输出带有死区时间的PWM波形    软件平台:MDK-ARM Standard Version4.70    硬件平台:stm32f4-discovery    主频:168MPeriph_Driver_version: V1.0.0        描述:用一个定时器(TIM1),输出带有死区时间的PWM波形,要求:死区时间为1us,CH1,CH2,CH3之间的相位差为3us,频率为50KHz  代码参考自STM32F4-Discovery_FW_V1.1.0\Project\Peripheral_Examples\TIM_ComplementarySignals    author:大舟    data:2013-04-15**********************************************/#include "stm32f4_discovery.h"TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;TIM_OCInitTypeDef  TIM_OCInitStructure;TIM_BDTRInitTypeDef TIM_BDTRInitStructure;uint16_t TimerPeriod = 0;uint16_t Channel1Pulse = 0, Channel2Pulse = 0, Channel3Pulse = 0;/* Private function prototypes */void TIM_Config(void);int main(void){/*!< At this stage the microcontroller clock setting is already configured,this is done through SystemInit() function which is called from startupfile (startup_stm32f4xx.s) before to branch to application main.To reconfigure the default setting of SystemInit() function, refer tosystem_stm32f4xx.c file*//* TIM1 Configuration */TIM_Config();/* -----------------------------------------------------------------------1/ Generate 3 complementary PWM signals with 3 different duty cycles:In this example TIM1 input clock (TIM1CLK) is set to 2 * APB2 clock (PCLK2),since APB2 prescaler is different from 1 (APB2 Prescaler = 2, see system_stm32f4xx.c file).TIM1CLK = 2 * PCLK2PCLK2 = HCLK / 2=> TIM1CLK = 2*(HCLK / 2) = HCLK = SystemCoreClockTo get TIM1 counter clock at 168 MHz, the prescaler is computed as follows:Prescaler = (TIM1CLK / TIM1 counter clock) - 1Prescaler = (SystemCoreClock / 168 MHz) - 1 = 0The objective is to generate PWM signal at 17.57 KHz:- TIM1_Period = (SystemCoreClock / 17570) - 1To get TIM1 output clock at 17.57 KHz, the period (ARR) is computed as follows:ARR = (TIM1 counter clock / TIM1 output clock) - 1 = 9561The Three Duty cycles are computed as the following description:TIM1 Channel1 duty cycle = (TIM1_CCR1/ TIM1_ARR)* 100 = 50%TIM1 Channel2 duty cycle = (TIM1_CCR2/ TIM1_ARR)* 100 = 25%TIM1 Channel3 duty cycle = (TIM1_CCR3/ TIM1_ARR)* 100 = 12.5%The Timer pulse is calculated as follows:- TIM1_CCRx = (DutyCycle * TIM1_ARR)/ 1002/ Insert a dead time equal to (11/SystemCoreClock) ns//这句不对,示波器里观测也不对,不是这样算的。正确的deadtime的计算方法(经理论与示波器测试成功)TIM_BDTRInitStructure.TIM_DeadTime=255 //这句设定的就是寄存器TIMx_BDTR的后8位,即DTG[7:0],所以最大值为255从下面的代码中的“第五步”中,实际上就相当于TIM1->BDTR=0x71FF;查看"STM32中文参考手册2009.pdf"的TIMx_BDTR(第248页),列寄存器TIMx_BDTR的后8位如下:位7:0UTG[7:0]: 死区发生器设置 (Dead-time generator setup) 这些位定义了插入互补输出之间的死区持续时间。假设DT表示其持续时间: DTG[7:5]=0xx => DT=DTG[7:0] × Tdtg,Tdtg = Tdts; DTG[7:5]=10x => DT=(64+DTG[5:0]) × Tdtg,Tdtg = 2 × Tdts;DTG[7:5]=110 => DT=(32+DTG[4:0]) × Tdtg,Tdtg = 8 × Tdts;DTG[7:5]=111 => DT=(32+DTG[4:0]) × Tdtg,Tdtg = 16× Tdts;例:若Tdts = 1/168us(频率为168M),可能的死区时间DT为:0到756ns,若步长时间Tdtg为1/168us;762ns到1512ns,若步长时间Tdtg为2/168us;1524ns到3us,若步长时间Tdtg为8/168us;3048ns到6us,若步长时间Tdtg为16/168us;计算这里要求设置deadtime为1us,落在区间"762ns到1512ns",所以选择公式“DTG[7:5]=10x => DT=(64+DTG[5:0])×Tdtg,Tdtg=2×Tdts;”列方程:(64+x)×2/168us = 1us;得x=20。所以DTG[5:0]=010100;推出DTG[7:0]=10010100=0x94。所以TIM_DeadTime=0x94。3/ Configure the break feature, active at High level, and using the automaticoutput enable feature4/ Use the Locking parameters level1.5/ 这里要求3个通道的波形不是对齐的,所以必须设定为TIM_OCMode_Toggle模式,这样,ARR得走两趟才是一个周期,CCR1(TIM_Pulse)、CCR2、CCR3不同,则触发的点也不同,即错开了相位。注意,不管TIM_Pulse为什么值,占空比都是50%。因为ARR走一趟才取反一次。6/要求pwm输出频率为50KHz。所以ARR=(SystemCoreClock/100000)-1 = 1679。即对时钟进行1680分频。7/PWM1和PWM2的相位差为3us。计算如下因为ARR自加1的时间为(1/168M)s,即可列方程:(1/168M)x=3us,得x=504。即,CCR1、CCR2、CCR3之间相隔504时,PWM的相位差就为3usNote:SystemCoreClock variable holds HCLK frequency and is defined in system_stm32f4xx.c file.Each time the core clock (HCLK) changes, user had to call SystemCoreClockUpdate()function to update SystemCoreClock variable value. Otherwise, any configurationbased on this variable will be incorrect.----------------------------------------------------------------------- *//* Compute the value to be set in ARR register to generate signal frequency at 17.57 Khz */TimerPeriod = (SystemCoreClock / 100000) - 1;//1679;17570 ARR=9561/* Compute CCR1 value to generate a duty cycle at 50% for channel 1 */Channel1Pulse = 100;//= (uint16_t) (((uint32_t) 5 * (TimerPeriod - 1)) / 10);//CCR1_Val=4780,比较值/* Compute CCR2 value to generate a duty cycle at 25%  for channel 2 */Channel2Pulse = 604;// = (uint16_t) (((uint32_t) 25 * (TimerPeriod - 1)) / 100);//CCR2_Val=2390,比较值/* Compute CCR3 value to generate a duty cycle at 12.5%  for channel 3 */Channel3Pulse = 1108;// = (uint16_t) (((uint32_t) 125 * (TimerPeriod - 1)) / 1000);//CCR3_Val=1195,比较值/**@step第一步配置时钟*//**@step第二步配置goio口*//**@step第三步定时器基本配置*//* Time Base configuration */TIM_TimeBaseStructure.TIM_Prescaler = 0;//时钟预分频数,对168M进行1(0+1)分频TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;//向上计数 TIM_TimeBaseStructure.TIM_Period = TimerPeriod;//自动重装载寄存器的值,ARR=9561TIM_TimeBaseStructure.TIM_ClockDivision = 0;//采样分频 TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;//重复寄存器,用于自动更新pwm占空比TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);/**@step第四步 PWM输出配置*//* Channel 1, 2 and 3 Configuration in PWM mode */TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Toggle;//PWM1为正常占空比模式,PWM2为反极性模式TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;//High为占空比高极性,此时占空比为20%;Low则为反极性,占空比为80%TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;//使能该通道输出TIM_OCInitStructure.TIM_Pulse = Channel1Pulse;//设置占空比时间,CCR1_Val=4780,占空比为4780/(9561+1)=0.5//-------下面几个参数是高级定时器才会用到通用定时器不用配置TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;//使能互补端输出TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High;//设置互补端输出极性TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset;//刹车之后输出状态Specifies the TIM Output Compare pin state during Idle stateTIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;//刹车之后互补端输出状态//-------TIM_OC1Init(TIM1, &TIM_OCInitStructure);//对channel1进行配置TIM_OCInitStructure.TIM_Pulse = Channel2Pulse;//CCR2_Val=2390,比较值TIM_OC2Init(TIM1, &TIM_OCInitStructure);//对channel2进行配置TIM_OCInitStructure.TIM_Pulse = Channel3Pulse;//CCR3_Val=1195,比较值TIM_OC3Init(TIM1, &TIM_OCInitStructure);//对channel3进行配置/**@step第五步死区和刹车功能配置,高级定时器才有的,通用定时器不用配置*//* Automatic Output enable, Break, dead time and lock configuration*/TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable;//运行模式下输出TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable;//空闲模式下输出选择 TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1;//锁定设置,锁定级别1TIM_BDTRInitStructure.TIM_DeadTime = 0x94;//死区时间1usTIM_BDTRInitStructure.TIM_Break = TIM_Break_Disable;//刹车功能使能TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_Low;//刹车输入极性,即刹车控制引脚接GND时,PWM停止TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable;//自动输出使能TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure);/*刹车控制引脚为TIM1_BKIN pin(PB.12),将PB12接GND,channel和其互补通道,都变为刹车后的电平,具体为0还是1,要看如下两个设置:.TIM_OCIdleState = TIM_OCIdleState_Reset;//刹车之后,PWM通道变为0.TIM_OCNIdleState = TIM_OCNIdleState_Reset;//刹车之后,PWM互补通道变为0注意:如果没必要,还是不要开启刹车功能,因为会对PWM产生影响,特别是当PB12悬空时,波形将会有很大的波动。  这里不打开刹车功能,即.TIM_Break = TIM_Break_Disable;*//**@step第六步使能端的打开*//* TIM1 counter enable */TIM_Cmd(TIM1, ENABLE);//打开TIM1/* Main Output Enable */TIM_CtrlPWMOutputs(TIM1, ENABLE);//PWM输出使能,一定要记得打while (1);}/*** @brief  Configure the TIM1 Pins.* @param  None* @retval None*/void TIM_Config(void){GPIO_InitTypeDef GPIO_InitStructure;/* GPIOA and GPIOB clocks enable */RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB | RCC_AHB1Periph_GPIOE, ENABLE);/* TIM1 clock enable */RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);/* GPIOA Configuration: Channel 1 and 3 as alternate function push-pull */GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_10;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;GPIO_Init(GPIOA, &GPIO_InitStructure);/* GPIOA Configuration: Channel 2 as alternate function push-pull */GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;GPIO_Init(GPIOE, &GPIO_InitStructure);/* GPIOB Configuration: BKIN, Channel 1N, 2N and 3N as alternate function push-pull */GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;GPIO_Init(GPIOB, &GPIO_InitStructure);/* Connect TIM pins to AF1 */GPIO_PinAFConfig(GPIOA, GPIO_PinSource8, GPIO_AF_TIM1);//引脚功能,查看readme.txtGPIO_PinAFConfig(GPIOA, GPIO_PinSource10, GPIO_AF_TIM1);GPIO_PinAFConfig(GPIOB, GPIO_PinSource12, GPIO_AF_TIM1);GPIO_PinAFConfig(GPIOB, GPIO_PinSource13, GPIO_AF_TIM1);GPIO_PinAFConfig(GPIOB, GPIO_PinSource14, GPIO_AF_TIM1);GPIO_PinAFConfig(GPIOB, GPIO_PinSource15, GPIO_AF_TIM1);GPIO_PinAFConfig(GPIOE, GPIO_PinSource11, GPIO_AF_TIM1);}/**@end*/#ifdef  USE_FULL_ASSERT/*** @brief  Reports the name of the source file and the source line number*         where the assert_param error has occurred.* @param  file: pointer to the source file name* @param  line: assert_param error line source number* @retval None*/void assert_failed(uint8_t* file, uint32_t line){/* User can add his own implementation to report the file name and line number,ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */while (1){}}#endif/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/




readme.txt

/**  @page TIM_ComplementarySignals TIM Complementary Signals example    @verbatim  ******************** (C) COPYRIGHT 2011 STMicroelectronics *******************  * @file    TIM_ComplementarySignals/readme.txt   * @author  MCD Application Team  * @version V1.0.0  * @date    19-September-2011  * @brief   Description of the TIM Complementary Signals example.  ******************************************************************************  * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS  * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE  * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY  * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING  * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE  * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.  ******************************************************************************   @endverbatim@par Example Description This example shows how to configure the TIM1 peripheral to generate three complementary TIM1 signals, to insert a defined dead time value, to use the break feature and to lock the desired parameters.TIM1CLK is fixed to SystemCoreClock, the TIM1 Prescaler is equal to 0 so the TIM1 counter clock used is SystemCoreClock (168 MHz).The objective is to generate PWM signal at 17.57 KHz:  - TIM1_Period = (SystemCoreClock / 17570) - 1The Three Duty cycles are computed as the following description: The channel 1 duty cycle is set to 50% so channel 1N is set to 50%.The channel 2 duty cycle is set to 25% so channel 2N is set to 75%.The channel 3 duty cycle is set to 12.5% so channel 3N is set to 87.5%.The Timer pulse is calculated as follows:  - ChannelxPulse = DutyCycle * (TIM1_Period - 1) / 100A dead time equal to 11/SystemCoreClock is inserted between the different complementary signals, and the Lock level 1 is selected.The break Polarity is used at High level.The TIM1 waveform can be displayed using an oscilloscope.@par Directory contents   - TIM_ComplementarySignals/stm32f4xx_conf.h    Library Configuration file  - TIM_ComplementarySignals/stm32f4xx_it.c      Interrupt handlers  - TIM_ComplementarySignals/stm32f4xx_it.h      Interrupt handlers header file  - TIM_ComplementarySignals/main.c              Main program  - TIM_ComplementarySignals/system_stm32f4xx.c  STM32F4xx system source file  @par Hardware and Software environment   - This example runs on STM32F4xx Devices Revision A.    - This example has been tested with STM32F4-Discovery (MB997) RevA and can be    easily tailored to any other development board.      - STM32F4-Discovery    - Connect the TIM1 pins to an oscilloscope to monitor the different waveforms:      - TIM1_CH1  pin (PA.08)        - TIM1_CH1N pin (PB.13)        - TIM1_CH2  pin (PE.11)        - TIM1_CH2N pin (PB.14)        - TIM1_CH3  pin (PA.10)        - TIM1_CH3N pin (PB.15)    - Connect the TIM1 break pin TIM1_BKIN pin (PB.12) to the GND. To generate a       break event, switch this pin level from 0V to 3.3V.  @par How to use it ? In order to make the program work, you must do the following : + EWARM    - Open the TIM_ComplementarySignals.eww workspace     - Rebuild all files: Project->Rebuild all    - Load project image: Project->Debug    - Run program: Debug->Go(F5) + MDK-ARM    - Open the TIM_ComplementarySignals.uvproj project    - Rebuild all files: Project->Rebuild all target files    - Load project image: Debug->Start/Stop Debug Session    - Run program: Debug->Run (F5)     + TASKING    - Open TASKING toolchain.    - Click on File->Import, select General->'Existing Projects into Workspace'       and then click "Next".     - Browse to  TASKING workspace directory and select the project "TIM_ComplementarySignals"       - Rebuild all project files: Select the project in the "Project explorer"       window then click on Project->build project menu.    - Run program: Select the project in the "Project explorer" window then click       Run->Debug (F11) + TrueSTUDIO    - Open the TrueSTUDIO toolchain.    - Click on File->Switch Workspace->Other and browse to TrueSTUDIO workspace       directory.    - Click on File->Import, select General->'Existing Projects into Workspace'       and then click "Next".     - Browse to the TrueSTUDIO workspace directory and select the project "TIM_ComplementarySignals"     - Rebuild all project files: Select the project in the "Project explorer"       window then click on Project->build project menu.    - Run program: Select the project in the "Project explorer" window then click       Run->Debug (F11)    * <h3><center>© COPYRIGHT 2011 STMicroelectronics</center></h3> */

代码下载地址:http://download.csdn.net/detail/dazhou158/5261883




原创粉丝点击