jdk源码学习------String

来源:互联网 发布:上班自动签到软件 编辑:程序博客网 时间:2024/04/30 16:14
/* * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */package java.lang;import java.io.ObjectStreamClass;import java.io.ObjectStreamField;import java.io.UnsupportedEncodingException;import java.nio.charset.Charset;import java.util.ArrayList;import java.util.Arrays;import java.util.Comparator;import java.util.Formatter;import java.util.Locale;import java.util.regex.Matcher;import java.util.regex.Pattern;import java.util.regex.PatternSyntaxException;/** * The <code>String</code> class represents character strings. All * string literals in Java programs, such as <code>"abc"</code>, are * implemented as instances of this class. * <p> * Strings are constant; their values cannot be changed after they * are created. String buffers support mutable strings. * Because String objects are immutable they can be shared. For example: * <p><blockquote><pre> *     String str = "abc"; * </pre></blockquote><p> * is equivalent to: * <p><blockquote><pre> *     char data[] = {'a', 'b', 'c'}; *     String str = new String(data); * </pre></blockquote><p> * Here are some more examples of how strings can be used: * <p><blockquote><pre> *     System.out.println("abc"); *     String cde = "cde"; *     System.out.println("abc" + cde); *     String c = "abc".substring(2,3); *     String d = cde.substring(1, 2); * </pre></blockquote> * <p> * The class <code>String</code> includes methods for examining * individual characters of the sequence, for comparing strings, for * searching strings, for extracting substrings, and for creating a * copy of a string with all characters translated to uppercase or to * lowercase. Case mapping is based on the Unicode Standard version * specified by the {@link java.lang.Character Character} class. * <p> * The Java language provides special support for the string * concatenation operator ( + ), and for conversion of * other objects to strings. String concatenation is implemented * through the <code>StringBuilder</code>(or <code>StringBuffer</code>) * class and its <code>append</code> method. * String conversions are implemented through the method * <code>toString</code>, defined by <code>Object</code> and * inherited by all classes in Java. For additional information on * string concatenation and conversion, see Gosling, Joy, and Steele, * <i>The Java Language Specification</i>. * * <p> Unless otherwise noted, passing a <tt>null</tt> argument to a constructor * or method in this class will cause a {@link NullPointerException} to be * thrown. * * <p>A <code>String</code> represents a string in the UTF-16 format * in which <em>supplementary characters</em> are represented by <em>surrogate * pairs</em> (see the section <a href="Character.html#unicode">Unicode * Character Representations</a> in the <code>Character</code> class for * more information). * Index values refer to <code>char</code> code units, so a supplementary * character uses two positions in a <code>String</code>. * <p>The <code>String</code> class provides methods for dealing with * Unicode code points (i.e., characters), in addition to those for * dealing with Unicode code units (i.e., <code>char</code> values). * * @author  Lee Boynton * @author  Arthur van Hoff * @author  Martin Buchholz * @author  Ulf Zibis * @see     java.lang.Object#toString() * @see     java.lang.StringBuffer * @see     java.lang.StringBuilder * @see     java.nio.charset.Charset * @since   JDK1.0 */public final class String    implements java.io.Serializable, Comparable<String>, CharSequence{    /** The value is used for character storage. */    private final char value[];//可见String是由char数组来保存数据的,对string的操作最后都会反映到char数组上    /** The offset is the first index of the storage that is used. */    private final int offset;//存储开始的索引    /** The count is the number of characters in the String. */    private final int count;//string 的长度(存放了多少个字符)    /** Cache the hash code for the string */    private int hash; // Default to 0    /** use serialVersionUID from JDK 1.0.2 for interoperability */    private static final long serialVersionUID = -6849794470754667710L;    /**     * Class String is special cased within the Serialization Stream Protocol.     *     * A String instance is written initially into an ObjectOutputStream in the     * following format:     * <pre>     *      <code>TC_STRING</code> (utf String)     * </pre>     * The String is written by method <code>DataOutput.writeUTF</code>.     * A new handle is generated to  refer to all future references to the     * string instance within the stream.     */    private static final ObjectStreamField[] serialPersistentFields =        new ObjectStreamField[0];    /**     * Initializes a newly created {@code String} object so that it represents     * an empty character sequence.  Note that use of this constructor is     * unnecessary since Strings are immutable.     */    public String() {        this.offset = 0;        this.count = 0;        this.value = new char[0];//初始化一个长度为0的数组    }    /**     * Initializes a newly created {@code String} object so that it represents     * the same sequence of characters as the argument; in other words, the     * newly created string is a copy of the argument string. Unless an     * explicit copy of {@code original} is needed, use of this constructor is     * unnecessary since Strings are immutable.     *     * @param  original     *         A {@code String}     */    public String(String original) {        int size = original.count;        char[] originalValue = original.value;        char[] v;        if (originalValue.length > size) { //这里需要考虑到字符数组的长度大于count的情况,说明有部分字符是不属于该字符串的。            // The array representing the String is bigger than the new            // String itself.  Perhaps this constructor is being called            // in order to trim the baggage, so make a copy of the array.            int off = original.offset;            v = Arrays.copyOfRange(originalValue, off, off+size);//调用了Arrays.copyOfRange方法        } else {            // The array representing the String is the same            // size as the String, so no point in making a copy.            v = originalValue;        }        this.offset = 0;        this.count = size;        this.value = v;//然后才能真正赋值    }    /**     * Allocates a new {@code String} so that it represents the sequence of     * characters currently contained in the character array argument.
     *下面这句很重要呀
     * The     * contents of the character array are copied; subsequent modification of     * the character array does not affect the newly created string.
     *这样的话,后续对传递过来的数组value的修改不会影响到String     *     * @param  value     *         The initial value of the string     */    public String(char value[]) {        int size = value.length;        this.offset = 0;        this.count = size;        this.value = Arrays.copyOf(value, size);//这个是不是直接把value赋值给this.value,而是通过Arrays.copyOf(理由如上面注释所示)    }    /**     * Allocates a new {@code String} that contains characters from a subarray     * of the character array argument. The {@code offset} argument is the     * index of the first character of the subarray and the {@code count}     * argument specifies the length of the subarray. The contents of the     * subarray are copied; subsequent modification of the character array does     * not affect the newly created string.     *     * @param  value     *         Array that is the source of characters     *     * @param  offset     *         The initial offset     *     * @param  count     *         The length     *     * @throws  IndexOutOfBoundsException     *          If the {@code offset} and {@code count} arguments index     *          characters outside the bounds of the {@code value} array     */    public String(char value[], int offset, int count) {        if (offset < 0) {            throw new StringIndexOutOfBoundsException(offset);        }        if (count < 0) {            throw new StringIndexOutOfBoundsException(count);        }        // Note: offset or count might be near -1>>>1.        if (offset > value.length - count) {            throw new StringIndexOutOfBoundsException(offset + count);        }        this.offset = 0;        this.count = count;        this.value = Arrays.copyOfRange(value, offset, offset+count);//copyOfRange,最后的参数是offset+count    }    /**     * Allocates a new {@code String} that contains characters from a subarray     * of the <a href="Character.html#unicode">Unicode code point</a> array     * argument.  The {@code offset} argument is the index of the first code     * point of the subarray and the {@code count} argument specifies the     * length of the subarray.  The contents of the subarray are converted to     * {@code char}s; subsequent modification of the {@code int} array does not     * affect the newly created string.     *     * @param  codePoints     *         Array that is the source of Unicode code points     *     * @param  offset     *         The initial offset     *     * @param  count     *         The length     *     * @throws  IllegalArgumentException     *          If any invalid Unicode code point is found in {@code     *          codePoints}     *     * @throws  IndexOutOfBoundsException     *          If the {@code offset} and {@code count} arguments index     *          characters outside the bounds of the {@code codePoints} array     *     * @since  1.5     */    public String(int[] codePoints, int offset, int count) {        if (offset < 0) {            throw new StringIndexOutOfBoundsException(offset);        }        if (count < 0) {            throw new StringIndexOutOfBoundsException(count);        }        // Note: offset or count might be near -1>>>1.        if (offset > codePoints.length - count) {            throw new StringIndexOutOfBoundsException(offset + count);        }        final int end = offset + count;        // Pass 1: Compute precise size of char[]        int n = count;        for (int i = offset; i < end; i++) {            int c = codePoints[i];            if (Character.isBmpCodePoint(c))  //不同codepoint的char需要不同的长度                continue;            else if (Character.isValidCodePoint(c))//占两位                n++;            else throw new IllegalArgumentException(Integer.toString(c));        }        // Pass 2: Allocate and fill in char[]        final char[] v = new char[n];//创建一个数组        for (int i = offset, j = 0; i < end; i++, j++) {//分别赋值            int c = codePoints[i];            if (Character.isBmpCodePoint(c))                v[j] = (char) c;            else                Character.toSurrogates(c, v, j++);        }        this.value  = v;        this.count  = n;        this.offset = 0;    }    /**     * Allocates a new {@code String} constructed from a subarray of an array     * of 8-bit integer values.     *     * <p> The {@code offset} argument is the index of the first byte of the     * subarray, and the {@code count} argument specifies the length of the     * subarray.     *     * <p> Each {@code byte} in the subarray is converted to a {@code char} as     * specified in the method above.     *     * @deprecated This method does not properly convert bytes into characters.     * As of JDK 1.1, the preferred way to do this is via the     * {@code String} constructors that take a {@link     * java.nio.charset.Charset}, charset name, or that use the platform's     * default charset.     *     * @param  ascii     *         The bytes to be converted to characters     *     * @param  hibyte     *         The top 8 bits of each 16-bit Unicode code unit     *     * @param  offset     *         The initial offset     * @param  count     *         The length     *     * @throws  IndexOutOfBoundsException     *          If the {@code offset} or {@code count} argument is invalid     *     * @see  #String(byte[], int)     * @see  #String(byte[], int, int, java.lang.String)     * @see  #String(byte[], int, int, java.nio.charset.Charset)     * @see  #String(byte[], int, int)     * @see  #String(byte[], java.lang.String)     * @see  #String(byte[], java.nio.charset.Charset)     * @see  #String(byte[])     */    @Deprecated    public String(byte ascii[], int hibyte, int offset, int count) {        checkBounds(ascii, offset, count);        char value[] = new char[count];        if (hibyte == 0) {            for (int i = count ; i-- > 0 ;) {                value[i] = (char) (ascii[i + offset] & 0xff);            }        } else {            hibyte <<= 8;            for (int i = count ; i-- > 0 ;) {                value[i] = (char) (hibyte | (ascii[i + offset] & 0xff));            }        }        this.offset = 0;        this.count = count;        this.value = value;    }    /**     * Allocates a new {@code String} containing characters constructed from     * an array of 8-bit integer values. Each character <i>c</i>in the     * resulting string is constructed from the corresponding component     * <i>b</i> in the byte array such that:     *     * <blockquote><pre>     *     <b><i>c</i></b> == (char)(((hibyte & 0xff) << 8)     *                         | (<b><i>b</i></b> & 0xff))     * </pre></blockquote>     *     * @deprecated  This method does not properly convert bytes into     * characters.  As of JDK 1.1, the preferred way to do this is via the     * {@code String} constructors that take a {@link     * java.nio.charset.Charset}, charset name, or that use the platform's     * default charset.     *     * @param  ascii     *         The bytes to be converted to characters     *     * @param  hibyte     *         The top 8 bits of each 16-bit Unicode code unit     *     * @see  #String(byte[], int, int, java.lang.String)     * @see  #String(byte[], int, int, java.nio.charset.Charset)     * @see  #String(byte[], int, int)     * @see  #String(byte[], java.lang.String)     * @see  #String(byte[], java.nio.charset.Charset)     * @see  #String(byte[])     */    @Deprecated    public String(byte ascii[], int hibyte) {        this(ascii, hibyte, 0, ascii.length);    }    /* Common private utility method used to bounds check the byte array     * and requested offset & length values used by the String(byte[],..)     * constructors.     */    private static void checkBounds(byte[] bytes, int offset, int length) {        if (length < 0)            throw new StringIndexOutOfBoundsException(length);        if (offset < 0)            throw new StringIndexOutOfBoundsException(offset);        if (offset > bytes.length - length)            throw new StringIndexOutOfBoundsException(offset + length);    }    /**     * Constructs a new {@code String} by decoding the specified subarray of     * bytes using the specified charset.  The length of the new {@code String}     * is a function of the charset, and hence may not be equal to the length     * of the subarray.     *     * <p> The behavior of this constructor when the given bytes are not valid     * in the given charset is unspecified.  The {@link     * java.nio.charset.CharsetDecoder} class should be used when more control     * over the decoding process is required.     *     * @param  bytes     *         The bytes to be decoded into characters     *     * @param  offset     *         The index of the first byte to decode     *     * @param  length     *         The number of bytes to decode     * @param  charsetName     *         The name of a supported {@linkplain java.nio.charset.Charset     *         charset}     *     * @throws  UnsupportedEncodingException     *          If the named charset is not supported     *     * @throws  IndexOutOfBoundsException     *          If the {@code offset} and {@code length} arguments index     *          characters outside the bounds of the {@code bytes} array     *     * @since  JDK1.1     */    public String(byte bytes[], int offset, int length, String charsetName)        throws UnsupportedEncodingException    {        if (charsetName == null)            throw new NullPointerException("charsetName");        checkBounds(bytes, offset, length);        char[] v = StringCoding.decode(charsetName, bytes, offset, length);  //charsetName:编码类型        this.offset = 0;        this.count = v.length;        this.value = v;    }    /**     * Constructs a new {@code String} by decoding the specified subarray of     * bytes using the specified {@linkplain java.nio.charset.Charset charset}.     * The length of the new {@code String} is a function of the charset, and     * hence may not be equal to the length of the subarray.     *     * <p> This method always replaces malformed-input and unmappable-character     * sequences with this charset's default replacement string.  The {@link     * java.nio.charset.CharsetDecoder} class should be used when more control     * over the decoding process is required.     *     * @param  bytes     *         The bytes to be decoded into characters     *     * @param  offset     *         The index of the first byte to decode     *     * @param  length     *         The number of bytes to decode     *     * @param  charset     *         The {@linkplain java.nio.charset.Charset charset} to be used to     *         decode the {@code bytes}     *     * @throws  IndexOutOfBoundsException     *          If the {@code offset} and {@code length} arguments index     *          characters outside the bounds of the {@code bytes} array     *     * @since  1.6     */    public String(byte bytes[], int offset, int length, Charset charset) {        if (charset == null)            throw new NullPointerException("charset");        checkBounds(bytes, offset, length);        char[] v = StringCoding.decode(charset, bytes, offset, length);//StringCoding.decode        this.offset = 0;        this.count = v.length;        this.value = v;    }    /**     * Constructs a new {@code String} by decoding the specified array of bytes     * using the specified {@linkplain java.nio.charset.Charset charset}.  The     * length of the new {@code String} is a function of the charset, and hence     * may not be equal to the length of the byte array.     *     * <p> The behavior of this constructor when the given bytes are not valid     * in the given charset is unspecified.  The {@link     * java.nio.charset.CharsetDecoder} class should be used when more control     * over the decoding process is required.     *     * @param  bytes     *         The bytes to be decoded into characters     *     * @param  charsetName     *         The name of a supported {@linkplain java.nio.charset.Charset     *         charset}     *     * @throws  UnsupportedEncodingException     *          If the named charset is not supported     *     * @since  JDK1.1     */    public String(byte bytes[], String charsetName)        throws UnsupportedEncodingException    {        this(bytes, 0, bytes.length, charsetName);    }    /**     * Constructs a new {@code String} by decoding the specified array of     * bytes using the specified {@linkplain java.nio.charset.Charset charset}.     * The length of the new {@code String} is a function of the charset, and     * hence may not be equal to the length of the byte array.     *     * <p> This method always replaces malformed-input and unmappable-character     * sequences with this charset's default replacement string.  The {@link     * java.nio.charset.CharsetDecoder} class should be used when more control     * over the decoding process is required.     *     * @param  bytes     *         The bytes to be decoded into characters     *     * @param  charset     *         The {@linkplain java.nio.charset.Charset charset} to be used to     *         decode the {@code bytes}     *     * @since  1.6     */    public String(byte bytes[], Charset charset) {        this(bytes, 0, bytes.length, charset);    }    /**     * Constructs a new {@code String} by decoding the specified subarray of     * bytes using the platform's default charset.  The length of the new     * {@code String} is a function of the charset, and hence may not be equal     * to the length of the subarray.     *     * <p> The behavior of this constructor when the given bytes are not valid     * in the default charset is unspecified.  The {@link     * java.nio.charset.CharsetDecoder} class should be used when more control     * over the decoding process is required.     *     * @param  bytes     *         The bytes to be decoded into characters     *     * @param  offset     *         The index of the first byte to decode     *     * @param  length     *         The number of bytes to decode     *     * @throws  IndexOutOfBoundsException     *          If the {@code offset} and the {@code length} arguments index     *          characters outside the bounds of the {@code bytes} array     *     * @since  JDK1.1     */    public String(byte bytes[], int offset, int length) {        checkBounds(bytes, offset, length);        char[] v  = StringCoding.decode(bytes, offset, length);        this.offset = 0;        this.count = v.length;        this.value = v;    }    /**     * Constructs a new {@code String} by decoding the specified array of bytes     * using the platform's default charset.  The length of the new {@code     * String} is a function of the charset, and hence may not be equal to the     * length of the byte array.     *     * <p> The behavior of this constructor when the given bytes are not valid     * in the default charset is unspecified.  The {@link     * java.nio.charset.CharsetDecoder} class should be used when more control     * over the decoding process is required.     *     * @param  bytes     *         The bytes to be decoded into characters     *     * @since  JDK1.1     */    public String(byte bytes[]) {        this(bytes, 0, bytes.length);    }    /**     * Allocates a new string that contains the sequence of characters     * currently contained in the string buffer argument. The contents of the     * string buffer are copied; subsequent modification of the string buffer     * does not affect the newly created string.     *没有直接赋值,是为了防止以后对StringBuffer的修改会影响到String     * @param  buffer     *         A {@code StringBuffer}     */    public String(StringBuffer buffer) { //参数为StringBuffer        String result = buffer.toString();        this.value = result.value;        this.count = result.count;        this.offset = result.offset;    }    /**     * Allocates a new string that contains the sequence of characters     * currently contained in the string builder argument. The contents of the     * string builder are copied; subsequent modification of the string builder     * does not affect the newly created string.     *     * <p> This constructor is provided to ease migration to {@code     * StringBuilder}. Obtaining a string from a string builder via the {@code     * toString} method is likely to run faster and is generally preferred.     *没有直接赋值是为了防止以后对StringBuider的修改会影响到String     * @param   builder     *          A {@code StringBuilder}     *     * @since  1.5     */    public String(StringBuilder builder) {  // 参数为StringBuilder        String result = builder.toString();        this.value = result.value;        this.count = result.count;        this.offset = result.offset;    }    // Package private constructor which shares value array for speed.    String(int offset, int count, char value[]) {  //直接把传递过来的值赋给相应字段        this.value = value;        this.offset = offset;        this.count = count;    }    /**     * Returns the length of this string.     * The length is equal to the number of <a href="Character.html#unicode">Unicode     * code units</a> in the string.     *     * @return  the length of the sequence of characters represented by this     *          object.     */    public int length() {//我们常用来获得string长度的方法,原来有个int型的count值保存了长度值,这里返回的不是value的长度        return count;    }    /**     * Returns <tt>true</tt> if, and only if, {@link #length()} is <tt>0</tt>.     *     * @return <tt>true</tt> if {@link #length()} is <tt>0</tt>, otherwise     * <tt>false</tt>     *     * @since 1.6     */    public boolean isEmpty() { //根据count是不是零来判断(不能对null字符串使用isEmpty)        return count == 0;    }    /**     * Returns the <code>char</code> value at the     * specified index. An index ranges from <code>0</code> to     * <code>length() - 1</code>. The first <code>char</code> value of the sequence     * is at index <code>0</code>, the next at index <code>1</code>,     * and so on, as for array indexing.     *     * <p>If the <code>char</code> value specified by the index is a     * <a href="Character.html#unicode">surrogate</a>, the surrogate     * value is returned.     *     * @param      index   the index of the <code>char</code> value.     * @return     the <code>char</code> value at the specified index of this string.     *             The first <code>char</code> value is at index <code>0</code>.     * @exception  IndexOutOfBoundsException  if the <code>index</code>     *             argument is negative or not less than the length of this     *             string.     */    public char charAt(int index) {        if ((index < 0) || (index >= count)) {//如果传入的index不对,会抛出异常            throw new StringIndexOutOfBoundsException(index);        }        return value[index + offset];//返回char数组相对应的元素(不用循环就可以)    }    /**     * Returns the character (Unicode code point) at the specified     * index. The index refers to <code>char</code> values     * (Unicode code units) and ranges from <code>0</code> to     * {@link #length()}<code> - 1</code>.     *     * <p> If the <code>char</code> value specified at the given index     * is in the high-surrogate range, the following index is less     * than the length of this <code>String</code>, and the     * <code>char</code> value at the following index is in the     * low-surrogate range, then the supplementary code point     * corresponding to this surrogate pair is returned. Otherwise,     * the <code>char</code> value at the given index is returned.     *     * @param      index the index to the <code>char</code> values     * @return     the code point value of the character at the     *             <code>index</code>     * @exception  IndexOutOfBoundsException  if the <code>index</code>     *             argument is negative or not less than the length of this     *             string.     * @since      1.5     */    public int codePointAt(int index) {        if ((index < 0) || (index >= count)) {            throw new StringIndexOutOfBoundsException(index);        }        return Character.codePointAtImpl(value, offset + index, offset + count);    }    /**     * Returns the character (Unicode code point) before the specified     * index. The index refers to <code>char</code> values     * (Unicode code units) and ranges from <code>1</code> to {@link     * CharSequence#length() length}.     *     * <p> If the <code>char</code> value at <code>(index - 1)</code>     * is in the low-surrogate range, <code>(index - 2)</code> is not     * negative, and the <code>char</code> value at <code>(index -     * 2)</code> is in the high-surrogate range, then the     * supplementary code point value of the surrogate pair is     * returned. If the <code>char</code> value at <code>index -     * 1</code> is an unpaired low-surrogate or a high-surrogate, the     * surrogate value is returned.     *     * @param     index the index following the code point that should be returned     * @return    the Unicode code point value before the given index.     * @exception IndexOutOfBoundsException if the <code>index</code>     *            argument is less than 1 or greater than the length     *            of this string.     * @since     1.5     */    public int codePointBefore(int index) {        int i = index - 1;        if ((i < 0) || (i >= count)) {            throw new StringIndexOutOfBoundsException(index);        }        return Character.codePointBeforeImpl(value, offset + index, offset);    }    /**     * Returns the number of Unicode code points in the specified text     * range of this <code>String</code>. The text range begins at the     * specified <code>beginIndex</code> and extends to the     * <code>char</code> at index <code>endIndex - 1</code>. Thus the     * length (in <code>char</code>s) of the text range is     * <code>endIndex-beginIndex</code>. Unpaired surrogates within     * the text range count as one code point each.     *     * @param beginIndex the index to the first <code>char</code> of     * the text range.     * @param endIndex the index after the last <code>char</code> of     * the text range.     * @return the number of Unicode code points in the specified text     * range     * @exception IndexOutOfBoundsException if the     * <code>beginIndex</code> is negative, or <code>endIndex</code>     * is larger than the length of this <code>String</code>, or     * <code>beginIndex</code> is larger than <code>endIndex</code>.     * @since  1.5     */    public int codePointCount(int beginIndex, int endIndex) {        if (beginIndex < 0 || endIndex > count || beginIndex > endIndex) {            throw new IndexOutOfBoundsException();        }        return Character.codePointCountImpl(value, offset+beginIndex, endIndex-beginIndex);    }    /**     * Returns the index within this <code>String</code> that is     * offset from the given <code>index</code> by     * <code>codePointOffset</code> code points. Unpaired surrogates     * within the text range given by <code>index</code> and     * <code>codePointOffset</code> count as one code point each.     *     * @param index the index to be offset     * @param codePointOffset the offset in code points     * @return the index within this <code>String</code>     * @exception IndexOutOfBoundsException if <code>index</code>     *   is negative or larger then the length of this     *   <code>String</code>, or if <code>codePointOffset</code> is positive     *   and the substring starting with <code>index</code> has fewer     *   than <code>codePointOffset</code> code points,     *   or if <code>codePointOffset</code> is negative and the substring     *   before <code>index</code> has fewer than the absolute value     *   of <code>codePointOffset</code> code points.     * @since 1.5     */    public int offsetByCodePoints(int index, int codePointOffset) {        if (index < 0 || index > count) {            throw new IndexOutOfBoundsException();        }        return Character.offsetByCodePointsImpl(value, offset, count,                                                offset+index, codePointOffset) - offset;    }    /**     * Copy characters from this string into dst starting at dstBegin.     * This method doesn't perform any range checking.     */    void getChars(char dst[], int dstBegin) {        System.arraycopy(value, offset, dst, dstBegin, count);//把this.value 从offset开始的字符,copy到dst    }    /**     * Copies characters from this string into the destination character     * array.     * <p>     * The first character to be copied is at index <code>srcBegin</code>;     * the last character to be copied is at index <code>srcEnd-1</code>     * (thus the total number of characters to be copied is     * <code>srcEnd-srcBegin</code>). The characters are copied into the     * subarray of <code>dst</code> starting at index <code>dstBegin</code>     * and ending at index:     * <p><blockquote><pre>     *     dstbegin + (srcEnd-srcBegin) - 1     * </pre></blockquote>     *     * @param      srcBegin   index of the first character in the string     *                        to copy.     * @param      srcEnd     index after the last character in the string     *                        to copy.     * @param      dst        the destination array.     * @param      dstBegin   the start offset in the destination array.     * @exception IndexOutOfBoundsException If any of the following     *            is true:     *            <ul><li><code>srcBegin</code> is negative.     *            <li><code>srcBegin</code> is greater than <code>srcEnd</code>     *            <li><code>srcEnd</code> is greater than the length of this     *                string     *            <li><code>dstBegin</code> is negative     *            <li><code>dstBegin+(srcEnd-srcBegin)</code> is larger than     *                <code>dst.length</code></ul>     */    public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {        if (srcBegin < 0) {            throw new StringIndexOutOfBoundsException(srcBegin);        }        if (srcEnd > count) {            throw new StringIndexOutOfBoundsException(srcEnd);        }        if (srcBegin > srcEnd) {            throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);        }        System.arraycopy(value, offset + srcBegin, dst, dstBegin,             srcEnd - srcBegin); //System.arraycopy    }    /**     * Copies characters from this string into the destination byte array. Each     * byte receives the 8 low-order bits of the corresponding character. The     * eight high-order bits of each character are not copied and do not     * participate in the transfer in any way.     *     * <p> The first character to be copied is at index {@code srcBegin}; the     * last character to be copied is at index {@code srcEnd-1}.  The total     * number of characters to be copied is {@code srcEnd-srcBegin}. The     * characters, converted to bytes, are copied into the subarray of {@code     * dst} starting at index {@code dstBegin} and ending at index:     *     * <blockquote><pre>     *     dstbegin + (srcEnd-srcBegin) - 1     * </pre></blockquote>     *     * @deprecated  This method does not properly convert characters into     * bytes.  As of JDK 1.1, the preferred way to do this is via the     * {@link #getBytes()} method, which uses the platform's default charset.     *     * @param  srcBegin     *         Index of the first character in the string to copy     *     * @param  srcEnd     *         Index after the last character in the string to copy     *     * @param  dst     *         The destination array     *     * @param  dstBegin     *         The start offset in the destination array     *     * @throws  IndexOutOfBoundsException     *          If any of the following is true:     *          <ul>     *            <li> {@code srcBegin} is negative     *            <li> {@code srcBegin} is greater than {@code srcEnd}     *            <li> {@code srcEnd} is greater than the length of this String     *            <li> {@code dstBegin} is negative     *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code     *                 dst.length}     *          </ul>     */    @Deprecated    public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {        if (srcBegin < 0) {            throw new StringIndexOutOfBoundsException(srcBegin);        }        if (srcEnd > count) {            throw new StringIndexOutOfBoundsException(srcEnd);        }        if (srcBegin > srcEnd) {            throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);        }        int j = dstBegin;        int n = offset + srcEnd;        int i = offset + srcBegin;        char[] val = value;   /* avoid getfield opcode */        while (i < n) {            dst[j++] = (byte)val[i++]; //怎么直接就这样强制转换了        }    }    /**     * Encodes this {@code String} into a sequence of bytes using the named     * charset, storing the result into a new byte array.     *     * <p> The behavior of this method when this string cannot be encoded in     * the given charset is unspecified.  The {@link     * java.nio.charset.CharsetEncoder} class should be used when more control     * over the encoding process is required.     *     * @param  charsetName     *         The name of a supported {@linkplain java.nio.charset.Charset     *         charset}     *     * @return  The resultant byte array     *     * @throws  UnsupportedEncodingException     *          If the named charset is not supported     *     * @since  JDK1.1     */    public byte[] getBytes(String charsetName)        throws UnsupportedEncodingException    {        if (charsetName == null) throw new NullPointerException();        return StringCoding.encode(charsetName, value, offset, count);//根据指定编码方式编码    }    /**     * Encodes this {@code String} into a sequence of bytes using the given     * {@linkplain java.nio.charset.Charset charset}, storing the result into a     * new byte array.     *     * <p> This method always replaces malformed-input and unmappable-character     * sequences with this charset's default replacement byte array.  The     * {@link java.nio.charset.CharsetEncoder} class should be used when more     * control over the encoding process is required.     *     * @param  charset     *         The {@linkplain java.nio.charset.Charset} to be used to encode     *         the {@code String}     *     * @return  The resultant byte array     *     * @since  1.6     */    public byte[] getBytes(Charset charset) {        if (charset == null) throw new NullPointerException();        return StringCoding.encode(charset, value, offset, count);    }    /**     * Encodes this {@code String} into a sequence of bytes using the     * platform's default charset, storing the result into a new byte array.     *     * <p> The behavior of this method when this string cannot be encoded in     * the default charset is unspecified.  The {@link     * java.nio.charset.CharsetEncoder} class should be used when more control     * over the encoding process is required.     *     * @return  The resultant byte array     *     * @since      JDK1.1     */    public byte[] getBytes() {        return StringCoding.encode(value, offset, count);    }    /**     * Compares this string to the specified object.  The result is {@code     * true} if and only if the argument is not {@code null} and is a {@code     * String} object that represents the same sequence of characters as this     * object.     *     * @param  anObject     *         The object to compare this {@code String} against     *     * @return  {@code true} if the given object represents a {@code String}     *          equivalent to this string, {@code false} otherwise     *     * @see  #compareTo(String)     * @see  #equalsIgnoreCase(String)     */    public boolean equals(Object anObject) {        if (this == anObject) {            return true;  //是否是同一对象        }        if (anObject instanceof String) {//是否是String            String anotherString = (String)anObject;//强制转换            int n = count;            if (n == anotherString.count) { //先判断长度是否相等                char v1[] = value;                char v2[] = anotherString.value;                int i = offset;                int j = anotherString.offset;                while (n-- != 0) { //循环判断每个char是否相等                    if (v1[i++] != v2[j++])                        return false;                }                return true;            }        }        return false;    }    /**     * Compares this string to the specified {@code StringBuffer}.  The result     * is {@code true} if and only if this {@code String} represents the same     * sequence of characters as the specified {@code StringBuffer}.     *     * @param  sb     *         The {@code StringBuffer} to compare this {@code String} against     *     * @return  {@code true} if this {@code String} represents the same     *          sequence of characters as the specified {@code StringBuffer},     *          {@code false} otherwise     *     * @since  1.4     */    public boolean contentEquals(StringBuffer sb) {        synchronized(sb) { //为什么需要synchronized            return contentEquals((CharSequence)sb); //StringBuffer的父类是AbstractStringBuilder,AbstractStringBuilder的父接口是CharSequence        }    }    /**     * Compares this string to the specified {@code CharSequence}.  The result     * is {@code true} if and only if this {@code String} represents the same     * sequence of char values as the specified sequence.     *     * @param  cs     *         The sequence to compare this {@code String} against     *     * @return  {@code true} if this {@code String} represents the same     *          sequence of char values as the specified sequence, {@code     *          false} otherwise     *     * @since  1.5     */    public boolean contentEquals(CharSequence cs) {//AbstractStringBuilder和String 都implements CharSequence        if (count != cs.length())  //判断长度            return false;        // Argument is a StringBuffer, StringBuilder        if (cs instanceof AbstractStringBuilder) { //判断是不是AbstractStringBuilder            char v1[] = value;            char v2[] = ((AbstractStringBuilder)cs).getValue(); //获得value            int i = offset;            int j = 0;            int n = count;            while (n-- != 0) {                if (v1[i++] != v2[j++])                    return false;            }            return true;        }        // Argument is a String        if (cs.equals(this))  //为什么是cs.equals(this),而不是this.equals(cs)。难道是因为this的类型是String为可知的?            return true;        // Argument is a generic CharSequence        char v1[] = value;        int i = offset;        int j = 0;        int n = count;        while (n-- != 0) {            if (v1[i++] != cs.charAt(j++))  //都可以通过CharSequence的charAt来获得每个char,为什么需要根据CharSequence的不同类型,进行不同的处理?                return false;        }        return true;    }    /**     * Compares this {@code String} to another {@code String}, ignoring case     * considerations.  Two strings are considered equal ignoring case if they     * are of the same length and corresponding characters in the two strings     * are equal ignoring case.     *     * <p> Two characters {@code c1} and {@code c2} are considered the same     * ignoring case if at least one of the following is true:     * <ul>     *   <li> The two characters are the same (as compared by the     *        {@code ==} operator)     *   <li> Applying the method {@link     *        java.lang.Character#toUpperCase(char)} to each character     *        produces the same result     *   <li> Applying the method {@link     *        java.lang.Character#toLowerCase(char)} to each character     *        produces the same result     * </ul>     *     * @param  anotherString     *         The {@code String} to compare this {@code String} against     *     * @return  {@code true} if the argument is not {@code null} and it     *          represents an equivalent {@code String} ignoring case; {@code     *          false} otherwise     *     * @see  #equals(Object)     */    public boolean equalsIgnoreCase(String anotherString) {        return (this == anotherString) ? true :               (anotherString != null) && (anotherString.count == count) &&               regionMatches(true, 0, anotherString, 0, count);    }    /**     * Compares two strings lexicographically.     * The comparison is based on the Unicode value of each character in     * the strings. The character sequence represented by this     * <code>String</code> object is compared lexicographically to the     * character sequence represented by the argument string. The result is     * a negative integer if this <code>String</code> object     * lexicographically precedes the argument string. The result is a     * positive integer if this <code>String</code> object lexicographically     * follows the argument string. The result is zero if the strings     * are equal; <code>compareTo</code> returns <code>0</code> exactly when     * the {@link #equals(Object)} method would return <code>true</code>.     * <p>     * This is the definition of lexicographic ordering. If two strings are     * different, then either they have different characters at some index     * that is a valid index for both strings, or their lengths are different,     * or both. If they have different characters at one or more index     * positions, let <i>k</i> be the smallest such index; then the string     * whose character at position <i>k</i> has the smaller value, as     * determined by using the < operator, lexicographically precedes the     * other string. In this case, <code>compareTo</code> returns the     * difference of the two character values at position <code>k</code> in     * the two string -- that is, the value:     * <blockquote><pre>     * this.charAt(k)-anotherString.charAt(k)     * </pre></blockquote>     * If there is no index position at which they differ, then the shorter     * string lexicographically precedes the longer string. In this case,     * <code>compareTo</code> returns the difference of the lengths of the     * strings -- that is, the value:     * <blockquote><pre>     * this.length()-anotherString.length()     * </pre></blockquote>     *     * @param   anotherString   the <code>String</code> to be compared.     * @return  the value <code>0</code> if the argument string is equal to     *          this string; a value less than <code>0</code> if this string     *          is lexicographically less than the string argument; and a     *          value greater than <code>0</code> if this string is     *          lexicographically greater than the string argument.     */    public int compareTo(String anotherString) {        int len1 = count;        int len2 = anotherString.count;        int n = Math.min(len1, len2);        char v1[] = value;        char v2[] = anotherString.value;        int i = offset;        int j = anotherString.offset;        if (i == j) {            int k = i;            int lim = n + i;            while (k < lim) {                char c1 = v1[k];                char c2 = v2[k];                if (c1 != c2) {                    return c1 - c2;                }                k++;            }        } else {            while (n-- != 0) {                char c1 = v1[i++];                char c2 = v2[j++];                if (c1 != c2) {                    return c1 - c2;                }            }        }        return len1 - len2;    }    /**     * A Comparator that orders <code>String</code> objects as by     * <code>compareToIgnoreCase</code>. This comparator is serializable.     * <p>     * Note that this Comparator does <em>not</em> take locale into account,     * and will result in an unsatisfactory ordering for certain locales.     * The java.text package provides <em>Collators</em> to allow     * locale-sensitive ordering.     *     * @see     java.text.Collator#compare(String, String)     * @since   1.2     */    public static final Comparator<String> CASE_INSENSITIVE_ORDER                                         = new CaseInsensitiveComparator();    private static class CaseInsensitiveComparator                         implements Comparator<String>, java.io.Serializable {        // use serialVersionUID from JDK 1.2.2 for interoperability        private static final long serialVersionUID = 8575799808933029326L;        public int compare(String s1, String s2) {            int n1 = s1.length();            int n2 = s2.length();            int min = Math.min(n1, n2);            for (int i = 0; i < min; i++) {                char c1 = s1.charAt(i);                char c2 = s2.charAt(i);                if (c1 != c2) {                    c1 = Character.toUpperCase(c1);                    c2 = Character.toUpperCase(c2);                    if (c1 != c2) {                        c1 = Character.toLowerCase(c1);                        c2 = Character.toLowerCase(c2);                        if (c1 != c2) {                            // No overflow because of numeric promotion                            return c1 - c2;                        }                    }                }            }            return n1 - n2;        }    }    /**     * Compares two strings lexicographically, ignoring case     * differences. This method returns an integer whose sign is that of     * calling <code>compareTo</code> with normalized versions of the strings     * where case differences have been eliminated by calling     * <code>Character.toLowerCase(Character.toUpperCase(character))</code> on     * each character.     * <p>     * Note that this method does <em>not</em> take locale into account,     * and will result in an unsatisfactory ordering for certain locales.     * The java.text package provides <em>collators</em> to allow     * locale-sensitive ordering.     *     * @param   str   the <code>String</code> to be compared.     * @return  a negative integer, zero, or a positive integer as the     *          specified String is greater than, equal to, or less     *          than this String, ignoring case considerations.     * @see     java.text.Collator#compare(String, String)     * @since   1.2     */    public int compareToIgnoreCase(String str) {        return CASE_INSENSITIVE_ORDER.compare(this, str);    }    /**     * Tests if two string regions are equal.     * <p>     * A substring of this <tt>String</tt> object is compared to a substring     * of the argument other. The result is true if these substrings     * represent identical character sequences. The substring of this     * <tt>String</tt> object to be compared begins at index <tt>toffset</tt>     * and has length <tt>len</tt>. The substring of other to be compared     * begins at index <tt>ooffset</tt> and has length <tt>len</tt>. The     * result is <tt>false</tt> if and only if at least one of the following     * is true:     * <ul><li><tt>toffset</tt> is negative.     * <li><tt>ooffset</tt> is negative.     * <li><tt>toffset+len</tt> is greater than the length of this     * <tt>String</tt> object.     * <li><tt>ooffset+len</tt> is greater than the length of the other     * argument.     * <li>There is some nonnegative integer <i>k</i> less than <tt>len</tt>     * such that:     * <tt>this.charAt(toffset+<i>k</i>) != other.charAt(ooffset+<i>k</i>)</tt>     * </ul>     *     * @param   toffset   the starting offset of the subregion in this string.     * @param   other     the string argument.     * @param   ooffset   the starting offset of the subregion in the string     *                    argument.     * @param   len       the number of characters to compare.     * @return  <code>true</code> if the specified subregion of this string     *          exactly matches the specified subregion of the string argument;     *          <code>false</code> otherwise.     */    public boolean regionMatches(int toffset, String other, int ooffset,                                 int len) {        char ta[] = value;        int to = offset + toffset;        char pa[] = other.value;        int po = other.offset + ooffset;        // Note: toffset, ooffset, or len might be near -1>>>1.        if ((ooffset < 0) || (toffset < 0) || (toffset > (long)count - len)            || (ooffset > (long)other.count - len)) {            return false;        }        while (len-- > 0) {            if (ta[to++] != pa[po++]) {                return false;            }        }        return true;    }    /**     * Tests if two string regions are equal.     * <p>     * A substring of this <tt>String</tt> object is compared to a substring     * of the argument <tt>other</tt>. The result is <tt>true</tt> if these     * substrings represent character sequences that are the same, ignoring     * case if and only if <tt>ignoreCase</tt> is true. The substring of     * this <tt>String</tt> object to be compared begins at index     * <tt>toffset</tt> and has length <tt>len</tt>. The substring of     * <tt>other</tt> to be compared begins at index <tt>ooffset</tt> and     * has length <tt>len</tt>. The result is <tt>false</tt> if and only if     * at least one of the following is true:     * <ul><li><tt>toffset</tt> is negative.     * <li><tt>ooffset</tt> is negative.     * <li><tt>toffset+len</tt> is greater than the length of this     * <tt>String</tt> object.     * <li><tt>ooffset+len</tt> is greater than the length of the other     * argument.     * <li><tt>ignoreCase</tt> is <tt>false</tt> and there is some nonnegative     * integer <i>k</i> less than <tt>len</tt> such that:     * <blockquote><pre>     * this.charAt(toffset+k) != other.charAt(ooffset+k)     * </pre></blockquote>     * <li><tt>ignoreCase</tt> is <tt>true</tt> and there is some nonnegative     * integer <i>k</i> less than <tt>len</tt> such that:     * <blockquote><pre>     * Character.toLowerCase(this.charAt(toffset+k)) !=               Character.toLowerCase(other.charAt(ooffset+k))     * </pre></blockquote>     * and:     * <blockquote><pre>     * Character.toUpperCase(this.charAt(toffset+k)) !=     *         Character.toUpperCase(other.charAt(ooffset+k))     * </pre></blockquote>     * </ul>     *     * @param   ignoreCase   if <code>true</code>, ignore case when comparing     *                       characters.     * @param   toffset      the starting offset of the subregion in this     *                       string.     * @param   other        the string argument.     * @param   ooffset      the starting offset of the subregion in the string     *                       argument.     * @param   len          the number of characters to compare.     * @return  <code>true</code> if the specified subregion of this string     *          matches the specified subregion of the string argument;     *          <code>false</code> otherwise. Whether the matching is exact     *          or case insensitive depends on the <code>ignoreCase</code>     *          argument.     */    public boolean regionMatches(boolean ignoreCase, int toffset,                           String other, int ooffset, int len) { //toffset,ooffset给出需要从哪个字符开始比较        char ta[] = value;        int to = offset + toffset;        char pa[] = other.value;        int po = other.offset + ooffset;        // Note: toffset, ooffset, or len might be near -1>>>1.        if ((ooffset < 0) || (toffset < 0) || (toffset > (long)count - len) ||                (ooffset > (long)other.count - len)) {            return false;        }        while (len-- > 0) {            char c1 = ta[to++];            char c2 = pa[po++];            if (c1 == c2) {  //直接比较                continue;            }            if (ignoreCase) { //如果需要忽略大小,需要进行进行比较                // If characters don't match but case may be ignored,                // try converting both characters to uppercase.                // If the results match, then the comparison scan should                // continue.                char u1 = Character.toUpperCase(c1);                char u2 = Character.toUpperCase(c2);                if (u1 == u2) {                    continue;                }                // Unfortunately, conversion to uppercase does not work properly                // for the Georgian alphabet, which has strange rules about case                // conversion.  So we need to make one last check before                // exiting.(有些特殊字符,全部转换成大写没用,需要转换成小写再比较一次)                if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {                    continue;                }            }            return false;        }        return true;    }    /**     * Tests if the substring of this string beginning at the     * specified index starts with the specified prefix.     *     * @param   prefix    the prefix.     * @param   toffset   where to begin looking in this string.     * @return  <code>true</code> if the character sequence represented by the     *          argument is a prefix of the substring of this object starting     *          at index <code>toffset</code>; <code>false</code> otherwise.     *          The result is <code>false</code> if <code>toffset</code> is     *          negative or greater than the length of this     *          <code>String</code> object; otherwise the result is the same     *          as the result of the expression     *          <pre>     *          this.substring(toffset).startsWith(prefix)     *          </pre>     */    public boolean startsWith(String prefix, int toffset) { //toffset:表示从字符串的第几个开始查找        char ta[] = value;        int to = offset + toffset;        char pa[] = prefix.value;        int po = prefix.offset;        int pc = prefix.count;        // Note: toffset might be near -1>>>1.        if ((toffset < 0) || (toffset > count - pc)) { //如果<0 或者与pc的和> count 均返回false            return false;        }        while (--pc >= 0) { //循环比对            if (ta[to++] != pa[po++]) {                return false;            }        }        return true;    }    /**     * Tests if this string starts with the specified prefix.     *     * @param   prefix   the prefix.     * @return  <code>true</code> if the character sequence represented by the     *          argument is a prefix of the character sequence represented by     *          this string; <code>false</code> otherwise.     *          Note also that <code>true</code> will be returned if the     *          argument is an empty string or is equal to this     *          <code>String</code> object as determined by the     *          {@link #equals(Object)} method.     * @since   1. 0     */    public boolean startsWith(String prefix) {        return startsWith(prefix, 0);    }    /**     * Tests if this string ends with the specified suffix.     *     * @param   suffix   the suffix.     * @return  <code>true</code> if the character sequence represented by the     *          argument is a suffix of the character sequence represented by     *          this object; <code>false</code> otherwise. Note that the     *          result will be <code>true</code> if the argument is the     *          empty string or is equal to this <code>String</code> object     *          as determined by the {@link #equals(Object)} method.     */    public boolean endsWith(String suffix) {        return startsWith(suffix, count - suffix.count);//这里居然调用的是startsWith    }    /**     * Returns a hash code for this string. The hash code for a     * <code>String</code> object is computed as     * <blockquote><pre>     * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]     * </pre></blockquote>     * using <code>int</code> arithmetic, where <code>s[i]</code> is the     * <i>i</i>th character of the string, <code>n</code> is the length of     * the string, and <code>^</code> indicates exponentiation.     * (The hash value of the empty string is zero.)     *     * @return  a hash code value for this object.     */    public int hashCode() {        int h = hash;        if (h == 0 && count > 0) {            int off = offset;            char val[] = value;            int len = count;            for (int i = 0; i < len; i++) {                h = 31*h + val[off++];            }            hash = h;  //这里赋值了还有什么用呢?        }        return h;    }    /**     * Returns the index within this string of the first occurrence of     * the specified character. If a character with value     * <code>ch</code> occurs in the character sequence represented by     * this <code>String</code> object, then the index (in Unicode     * code units) of the first such occurrence is returned. For     * values of <code>ch</code> in the range from 0 to 0xFFFF     * (inclusive), this is the smallest value <i>k</i> such that:     * <blockquote><pre>     * this.charAt(<i>k</i>) == ch     * </pre></blockquote>     * is true. For other values of <code>ch</code>, it is the     * smallest value <i>k</i> such that:     * <blockquote><pre>     * this.codePointAt(<i>k</i>) == ch     * </pre></blockquote>     * is true. In either case, if no such character occurs in this     * string, then <code>-1</code> is returned.     *     * @param   ch   a character (Unicode code point).     * @return  the index of the first occurrence of the character in the     *          character sequence represented by this object, or     *          <code>-1</code> if the character does not occur.     */    public int indexOf(int ch) {//查找ch在string中首次出现的位置        return indexOf(ch, 0); //这里传递过去的fromindex为0,那就是从string的起始处开始查找。    }    /**     * Returns the index within this string of the first occurrence of the     * specified character, starting the search at the specified index.     * <p>     * If a character with value <code>ch</code> occurs in the     * character sequence represented by this <code>String</code>     * object at an index no smaller than <code>fromIndex</code>, then     * the index of the first such occurrence is returned. For values     * of <code>ch</code> in the range from 0 to 0xFFFF (inclusive),     * this is the smallest value <i>k</i> such that:     * <blockquote><pre>     * (this.charAt(<i>k</i>) == ch) && (<i>k</i> >= fromIndex)     * </pre></blockquote>     * is true. For other values of <code>ch</code>, it is the     * smallest value <i>k</i> such that:     * <blockquote><pre>     * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> >= fromIndex)     * </pre></blockquote>     * is true. In either case, if no such character occurs in this     * string at or after position <code>fromIndex</code>, then     * <code>-1</code> is returned.     *     * <p>     * There is no restriction on the value of <code>fromIndex</code>. If it     * is negative, it has the same effect as if it were zero: this entire     * string may be searched. If it is greater than the length of this     * string, it has the same effect as if it were equal to the length of     * this string: <code>-1</code> is returned.     *     * <p>All indices are specified in <code>char</code> values     * (Unicode code units).     *     * @param   ch          a character (Unicode code point).     * @param   fromIndex   the index to start the search from.     * @return  the index of the first occurrence of the character in the     *          character sequence represented by this object that is greater     *          than or equal to <code>fromIndex</code>, or <code>-1</code>     *          if the character does not occur.     */    public int indexOf(int ch, int fromIndex) {        if (fromIndex < 0) {            fromIndex = 0;        } else if (fromIndex >= count) {            // Note: fromIndex might be near -1>>>1.            return -1;        }
        //MIN_SUPPLEMENTARY_CODE_POINT:Unicode supplementary code pooint的最小值(unicode表之外的增补表的最小值?)        if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) { //不清楚为什么要做这个判断 ,MIN_SUPPLEMENTARY_CODE_POINT代表什么            // handle most cases here (ch is a BMP code point or a            // negative value (invalid code point))            final char[] value = this.value;  //为什么这里需要把value 赋给final的,而不是直接操作呢?难道是为了string的不可变?            final int offset = this.offset;  //这里也是的把offset赋给了局部变量offset            final int max = offset + count;            for (int i = offset + fromIndex; i < max ; i++) {  //for循环查找                if (value[i] == ch) {  //判断是否找到                    return i - offset;                }            }            return -1;        } else {            return indexOfSupplementary(ch, fromIndex);        }    }    /**     * Handles (rare) calls of indexOf with a supplementary character.
    */
    //处理属于增补表的字符的查找
    private int indexOfSupplementary(int ch, int fromIndex) {        if (Character.isValidCodePoint(ch)) {            final char[] value = this.value;            final int offset = this.offset;            final char hi = Character.highSurrogate(ch); //高位?            final char lo = Character.lowSurrogate(ch); //低位?            final int max = offset + count - 1;   //与普通字符查找相比,这里多了-1            for (int i = offset + fromIndex; i < max; i++) {                if (value[i] == hi && value[i+1] == lo) {  //分开进行两部分进行比较                    return i - offset;                }            }        }        return -1;    }    /**     * Returns the index within this string of the last occurrence of     * the specified character. For values of <code>ch</code> in the     * range from 0 to 0xFFFF (inclusive), the index (in Unicode code     * units) returned is the largest value <i>k</i> such that:     * <blockquote><pre>     * this.charAt(<i>k</i>) == ch     * </pre></blockquote>     * is true. For other values of <code>ch</code>, it is the     * largest value <i>k</i> such that:     * <blockquote><pre>     * this.codePointAt(<i>k</i>) == ch     * </pre></blockquote>     * is true.  In either case, if no such character occurs in this     * string, then <code>-1</code> is returned.  The     * <code>String</code> is searched backwards starting at the last     * character.     *     * @param   ch   a character (Unicode code point).     * @return  the index of the last occurrence of the character in the     *          character sequence represented by this object, or     *          <code>-1</code> if the character does not occur.     */    public int lastIndexOf(int ch) { //ch 在字符串里面最后出现的位置        return lastIndexOf(ch, count - 1);//fromIndex传递过去的是count -1     }    /**     * Returns the index within this string of the last occurrence of     * the specified character, searching backward starting at the     * specified index. For values of <code>ch</code> in the range     * from 0 to 0xFFFF (inclusive), the index returned is the largest     * value <i>k</i> such that:     * <blockquote><pre>     * (this.charAt(<i>k</i>) == ch) && (<i>k</i> <= fromIndex)     * </pre></blockquote>     * is true. For other values of <code>ch</code>, it is the     * largest value <i>k</i> such that:     * <blockquote><pre>     * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> <= fromIndex)     * </pre></blockquote>     * is true. In either case, if no such character occurs in this     * string at or before position <code>fromIndex</code>, then     * <code>-1</code> is returned.     *     * <p>All indices are specified in <code>char</code> values     * (Unicode code units).     *     * @param   ch          a character (Unicode code point).     * @param   fromIndex   the index to start the search from. There is no     *          restriction on the value of <code>fromIndex</code>. If it is     *          greater than or equal to the length of this string, it has     *          the same effect as if it were equal to one less than the     *          length of this string: this entire string may be searched.     *          If it is negative, it has the same effect as if it were -1:     *          -1 is returned.     * @return  the index of the last occurrence of the character in the     *          character sequence represented by this object that is less     *          than or equal to <code>fromIndex</code>, or <code>-1</code>     *          if the character does not occur before that point.     */    public int lastIndexOf(int ch, int fromIndex) {        if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {            // handle most cases here (ch is a BMP code point or a            // negative value (invalid code point))            final char[] value = this.value;  //同样不直接对value操作            final int offset = this.offset;            int i = offset + Math.min(fromIndex, count - 1); //循环变量i,起始查找位置  ,这里居然没有跟indexOf那样判断fromIndex的值            for (; i >= offset ; i--) {  //从字符串后面往前查找                if (value[i] == ch) {                    return i - offset;                }            }            return -1;        } else {            return lastIndexOfSupplementary(ch, fromIndex);        }    }    /**     * Handles (rare) calls of lastIndexOf with a supplementary character.     */    private int lastIndexOfSupplementary(int ch, int fromIndex) {        if (Character.isValidCodePoint(ch)) {            final char[] value = this.value;            final int offset = this.offset;            char hi = Character.highSurrogate(ch);            char lo = Character.lowSurrogate(ch);            int i = offset + Math.min(fromIndex, count - 2);//这里是-2,上面是-1(因为ch占两个,所以需要-2才算一个char的开始位置?)            for (; i >= offset; i--) {                if (value[i] == hi && value[i+1] == lo) {                    return i - offset;                }            }        }        return -1;    }    /**     * Returns the index within this string of the first occurrence of the     * specified substring.     *     * <p>The returned index is the smallest value <i>k</i> for which:     * <blockquote><pre>     * this.startsWith(str, <i>k</i>)     * </pre></blockquote>     * If no such value of <i>k</i> exists, then {@code -1} is returned.     *     * @param   str   the substring to search for.     * @return  the index of the first occurrence of the specified substring,     *          or {@code -1} if there is no such occurrence.     */    public int indexOf(String str) { //查找子字符串在整个字符串中的起始位置        return indexOf(str, 0);//同样传递过去的fromIndex为0    }    /**     * Returns the index within this string of the first occurrence of the     * specified substring, starting at the specified index.     *     * <p>The returned index is the smallest value <i>k</i> for which:     * <blockquote><pre>     * <i>k</i> >= fromIndex && this.startsWith(str, <i>k</i>)     * </pre></blockquote>     * If no such value of <i>k</i> exists, then {@code -1} is returned.     *     * @param   str         the substring to search for.     * @param   fromIndex   the index from which to start the search.     * @return  the index of the first occurrence of the specified substring,     *          starting at the specified index,     *          or {@code -1} if there is no such occurrence.     */    public int indexOf(String str, int fromIndex) {        return indexOf(value, offset, count,                       str.value, str.offset, str.count, fromIndex); //这里为什么要传递字符串的三个值过去,可以直接获得的呀; 就是要传为什么不直接传两个
                                                                        //字符串好了,怎么要先获得再传递呢??    
    }    /**     * Code shared by String and StringBuffer to do searches. The     * source is the character array being searched, and the target     * is the string being searched for.     *     * @param   source       the characters being searched.     * @param   sourceOffset offset of the source string.     * @param   sourceCount  count of the source string.     * @param   target       the characters being searched for.     * @param   targetOffset offset of the target string.     * @param   targetCount  count of the target string.     * @param   fromIndex    the index to begin searching from.     */
    //参数够多,不过看名字也知道啥 意思    static int indexOf(char[] source, int sourceOffset, int sourceCount,                       char[] target, int targetOffset, int targetCount,                       int fromIndex) {        if (fromIndex >= sourceCount) { //如果传递的fromIndex大于或者等于源字符串的长度            return (targetCount == 0 ? sourceCount : -1);//目标字符串长度为0,就返回源字符串的长度,不然就返回-1        }        if (fromIndex < 0) {            fromIndex = 0;        }        if (targetCount == 0) {//目标字符串长度为0,而且不满足上面的条件,直接返回fromIndex            return fromIndex;        }        char first  = target[targetOffset]; //目标字符串的第一个char        int max = sourceOffset + (sourceCount - targetCount);//这里需要考虑到targetCount        for (int i = sourceOffset + fromIndex; i <= max; i++) {            /* Look for first character. */            if (source[i] != first) {   //一直往前查找,直到找到第一个(目标字符串的首字母与源字符串中的某个字符相等)                while (++i <= max && source[i] != first); //发现源码里面喜欢发等于或者变量的值的改变都放在循环的判断条件里面            }            /* Found first character, now look at the rest of v2 */
            //正如上面的英文,找到了第一个,现在开始看目标字符串剩下的
            if (i <= max) {//如果找到了第一个字符串                int j = i + 1;                 int end = j + targetCount - 1;                for (int k = targetOffset + 1; j < end && source[j] ==                         target[k]; j++, k++);//这个for就搞定了:取得source的第i+1个,同时取得target的第二个,进行比较;然后source和target的index同时递增                if (j == end) {//如果找到了,就知道target被遍历到了                    /* Found whole string. */                    return i - sourceOffset;                }            }        }        return -1;    }    /**     * Returns the index within this string of the last occurrence of the     * specified substring.  The last occurrence of the empty string ""     * is considered to occur at the index value {@code this.length()}.     *     * <p>The returned index is the largest value <i>k</i> for which:     * <blockquote><pre>     * this.startsWith(str, <i>k</i>)     * </pre></blockquote>     * If no such value of <i>k</i> exists, then {@code -1} is returned.     *     * @param   str   the substring to search for.     * @return  the index of the last occurrence of the specified substring,     *          or {@code -1} if there is no such occurrence.     */    public int lastIndexOf(String str) {        return lastIndexOf(str, count);//传入count作为fromIndex    }    /**     * Returns the index within this string of the last occurrence of the     * specified substring, searching backward starting at the specified index.     *     * <p>The returned index is the largest value <i>k</i> for which:     * <blockquote><pre>     * <i>k</i> <= fromIndex && this.startsWith(str, <i>k</i>)     * </pre></blockquote>     * If no such value of <i>k</i> exists, then {@code -1} is returned.     *     * @param   str         the substring to search for.     * @param   fromIndex   the index to start the search from.     * @return  the index of the last occurrence of the specified substring,     *          searching backward from the specified index,     *          or {@code -1} if there is no such occurrence.     */    public int lastIndexOf(String str, int fromIndex) {        return lastIndexOf(value, offset, count,                           str.value, str.offset, str.count, fromIndex);    }    /**     * Code shared by String and StringBuffer to do searches. The     * source is the character array being searched, and the target     * is the string being searched for.     *     * @param   source       the characters being searched.     * @param   sourceOffset offset of the source string.     * @param   sourceCount  count of the source string.     * @param   target       the characters being searched for.     * @param   targetOffset offset of the target string.     * @param   targetCount  count of the target string.     * @param   fromIndex    the index to begin searching from.     */    static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,                           char[] target, int targetOffset, int targetCount,                           int fromIndex) {        /*         * Check arguments; return immediately where possible. For         * consistency, don't check for null str.         */        int rightIndex = sourceCount - targetCount;//两个字符串相差字符个数        if (fromIndex < 0) {            return -1;        }        if (fromIndex > rightIndex) {//如果fromIndex比rightIndex大,说明target剩下的字符个数不够查找            fromIndex = rightIndex;//会改变fromIndex的值(下面我看到min的值,如果如之前所说,fromindex为count,这里没有修改它的值,在source[i]那里会报错)        }        /* Empty string always matches. */        if (targetCount == 0) {  //target为空,返回fromIndex(也就是说对空字符串使用lastIndexOf总能返回位置,这个值为传递过来的fromIndex)            return fromIndex;        }        int strLastIndex = targetOffset + targetCount - 1;        char strLastChar = target[strLastIndex];//target的最后一个字符,可见接下来是从target的后面往前进行比对        int min = sourceOffset + targetCount - 1;        int i = min + fromIndex;    startSearchForLastChar:        while (true) {            while (i >= min && source[i] != strLastChar) { //找target最后一个字符在source中是否存在匹配的字符                i--;            }            if (i < min) {//while执行结束,i<min表示source剩下的字符个数不够比对target剩下的字符                return -1;            }            int j = i - 1;//source往前进一个字符            int start = j - (targetCount - 1);            int k = strLastIndex - 1;            while (j > start) {                if (source[j--] != target[k--]) {//source往前进一个字符,target往前进一个字符,进行比对查找                    i--;                    continue startSearchForLastChar;//居然用了这个                }            }            return start - sourceOffset + 1;        }    }    /**     * Returns a new string that is a substring of this string. The     * substring begins with the character at the specified index and     * extends to the end of this string. <p>     * Examples:     * <blockquote><pre>     * "unhappy".substring(2) returns "happy"     * "Harbison".substring(3) returns "bison"     * "emptiness".substring(9) returns "" (an empty string)     * </pre></blockquote>     *     * @param      beginIndex   the beginning index, inclusive.     * @return     the specified substring.     * @exception  IndexOutOfBoundsException  if     *             <code>beginIndex</code> is negative or larger than the     *             length of this <code>String</code> object.     */    public String substring(int beginIndex) {        return substring(beginIndex, count);//如果没有传入endIndex,就传入count    }    /**     * Returns a new string that is a substring of this string. The     * substring begins at the specified <code>beginIndex</code> and     * extends to the character at index <code>endIndex - 1</code>.     * Thus the length of the substring is <code>endIndex-beginIndex</code>.     * <p>     * Examples:     * <blockquote><pre>     * "hamburger".substring(4, 8) returns "urge"     * "smiles".substring(1, 5) returns "mile"     * </pre></blockquote>     *     * @param      beginIndex   the beginning index, inclusive.     * @param      endIndex     the ending index, exclusive.     * @return     the specified substring.     * @exception  IndexOutOfBoundsException  if the     *             <code>beginIndex</code> is negative, or     *             <code>endIndex</code> is larger than the length of     *             this <code>String</code> object, or     *             <code>beginIndex</code> is larger than     *             <code>endIndex</code>.     */不需要循环    public String substring(int beginIndex, int endIndex) {        if (beginIndex < 0) {            throw new StringIndexOutOfBoundsException(beginIndex);  //有三种情况下会抛异常StringIndexOutOfBoundsException        }        if (endIndex > count) {            throw new StringIndexOutOfBoundsException(endIndex);        }        if (beginIndex > endIndex) {            throw new StringIndexOutOfBoundsException(endIndex - beginIndex);        }        return ((beginIndex == 0) && (endIndex == count)) ? this :            new String(offset + beginIndex, endIndex - beginIndex, value);  //居然会先判断返回的是否是整个字符串
                                                                            //现在到String构造方法那里去看看
                                                                            //居然直接就赋值了,我还以为真有截取的动作。把目标字符串的offset,count,value改                                                                            //变,也就是说目标offset的offset极可能不为0,而value的length绝对比count大)    }    /**     * Returns a new character sequence that is a subsequence of this sequence.     *     * <p> An invocation of this method of the form     *     * <blockquote><pre>     * str.subSequence(begin, end)</pre></blockquote>     *     * behaves in exactly the same way as the invocation     *     * <blockquote><pre>     * str.substring(begin, end)</pre></blockquote>     *
     *看下面这句:定义这个方法是为了implement CharSequence接口
     * This method is defined so that the <tt>String</tt> class can implement     * the {@link CharSequence} interface. </p>     *     * @param      beginIndex   the begin index, inclusive.     * @param      endIndex     the end index, exclusive.     * @return     the specified subsequence.     *     * @throws  IndexOutOfBoundsException     *          if <tt>beginIndex</tt> or <tt>endIndex</tt> are negative,     *          if <tt>endIndex</tt> is greater than <tt>length()</tt>,     *          or if <tt>beginIndex</tt> is greater than <tt>startIndex</tt>     *     * @since 1.4     * @spec JSR-51     */    public CharSequence subSequence(int beginIndex, int endIndex) {        return this.substring(beginIndex, endIndex);//实际调用的是String 的subString方法    }    /**     * Concatenates the specified string to the end of this string.     * <p>     * If the length of the argument string is <code>0</code>, then this     * <code>String</code> object is returned. Otherwise, a new     * <code>String</code> object is created, representing a character     * sequence that is the concatenation of the character sequence     * represented by this <code>String</code> object and the character     * sequence represented by the argument string.<p>     * Examples:     * <blockquote><pre>     * "cares".concat("s") returns "caress"     * "to".concat("get").concat("her") returns "together"     * </pre></blockquote>     *     * @param   str   the <code>String</code> that is concatenated to the end     *                of this <code>String</code>.     * @return  a string that represents the concatenation of this object's     *          characters followed by the string argument's characters.     */    public String concat(String str) {        int otherLen = str.length();//可见不能传入为null的str        if (otherLen == 0) {            return this;        }        char buf[] = new char[count + otherLen];//新字符数组        getChars(0, count, buf, 0);//getChars(int srcBegin, int srcEnd, char dst[], int dstBegin)把字符串填到buf里面        str.getChars(0, otherLen, buf, count);在进行一次填充,把str填进buf里面【注意两次调用getChars的调用方】        return new String(0, count + otherLen, buf);//构造一个新字符串返回    }    /**     * Returns a new string resulting from replacing all occurrences of     * <code>oldChar</code> in this string with <code>newChar</code>.     * <p>     * If the character <code>oldChar</code> does not occur in the     * character sequence represented by this <code>String</code> object,     * then a reference to this <code>String</code> object is returned.     * Otherwise, a new <code>String</code> object is created that     * represents a character sequence identical to the character sequence     * represented by this <code>String</code> object, except that every     * occurrence of <code>oldChar</code> is replaced by an occurrence     * of <code>newChar</code>.     * <p>     * Examples:     * <blockquote><pre>     * "mesquite in your cellar".replace('e', 'o')     *         returns "mosquito in your collar"     * "the war of baronets".replace('r', 'y')     *         returns "the way of bayonets"     * "sparring with a purple porpoise".replace('p', 't')     *         returns "starring with a turtle tortoise"     * "JonL".replace('q', 'x') returns "JonL" (no change)     * </pre></blockquote>     *     * @param   oldChar   the old character.     * @param   newChar   the new character.     * @return  a string derived from this string by replacing every     *          occurrence of <code>oldChar</code> with <code>newChar</code>.     */    public String replace(char oldChar, char newChar) {        if (oldChar != newChar) { //会判断两个char是不是相等            int len = count;            int i = -1;            char[] val = value; /* avoid getfield opcode */  //这里又赋值了,给了个注释,没看懂,不知道翻译回来是什么意思            int off = offset;   /* avoid getfield opcode */            while (++i < len) {   //查找oldChar在字符串中的位置(首次出现)                if (val[off + i] == oldChar) {                    break;                }            }            if (i < len) {//如果找到了                char buf[] = new char[len]; //构造一个具有len长度的字符数组                for (int j = 0 ; j < i ; j++) {  //为新创建的buf的0--(i-1)赋值                    buf[j] = val[off+j];                }                while (i < len) { //前面已经表示找到了第一个,将它赋值给新buf,然后继续往下找,找到了oldChar就赋值newChar,不然就赋旧值                    char c = val[off + i];                    buf[i] = (c == oldChar) ? newChar : c; //为什么这里第一次不需要判断,但是接下来的都需要判断(会创建很多char c)
                    i++;                }                return new String(0, len, buf); //返回一个新构造的字符串            }        }        return this;    }    /**     * Tells whether or not this string matches the given <a     * href="../util/regex/Pattern.html#sum">regular expression</a>.     *     * <p> An invocation of this method of the form     * <i>str</i><tt>.matches(</tt><i>regex</i><tt>)</tt> yields exactly the     * same result as the expression     *     * <blockquote><tt> {@link java.util.regex.Pattern}.{@link     * java.util.regex.Pattern#matches(String,CharSequence)     * matches}(</tt><i>regex</i><tt>,</tt> <i>str</i><tt>)</tt></blockquote>     *     * @param   regex     *          the regular expression to which this string is to be matched     *     * @return  <tt>true</tt> if, and only if, this string matches the     *          given regular expression     *     * @throws  PatternSyntaxException     *          if the regular expression's syntax is invalid     *     * @see java.util.regex.Pattern     *     * @since 1.4     * @spec JSR-51     */    public boolean matches(String regex) {        return Pattern.matches(regex, this); //调用Pattern.matches    }    /**     * Returns true if and only if this string contains the specified     * sequence of char values.     *     * @param s the sequence to search for     * @return true if this string contains <code>s</code>, false otherwise     * @throws NullPointerException if <code>s</code> is <code>null</code>     * @since 1.5     */需要循环    public boolean contains(CharSequence s) { //内部调用indexOf方法,参数是CharSequence类型,不是String类型,有什么深意?String的父接口        return indexOf(s.toString()) > -1;    }    /**     * Replaces the first substring of this string that matches the given <a     * href="../util/regex/Pattern.html#sum">regular expression</a> with the     * given replacement.     *     * <p> An invocation of this method of the form     * <i>str</i><tt>.replaceFirst(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>     * yields exactly the same result as the expression     *     * <blockquote><tt>     * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile     * compile}(</tt><i>regex</i><tt>).{@link     * java.util.regex.Pattern#matcher(java.lang.CharSequence)     * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceFirst     * replaceFirst}(</tt><i>repl</i><tt>)</tt></blockquote>     *     *<p>     * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the     * replacement string may cause the results to be different than if it were     * being treated as a literal replacement string; see     * {@link java.util.regex.Matcher#replaceFirst}.     * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special     * meaning of these characters, if desired.     *     * @param   regex     *          the regular expression to which this string is to be matched     * @param   replacement     *          the string to be substituted for the first match     *     * @return  The resulting <tt>String</tt>     *     * @throws  PatternSyntaxException     *          if the regular expression's syntax is invalid     *     * @see java.util.regex.Pattern     *     * @since 1.4     * @spec JSR-51     */    public String replaceFirst(String regex, String replacement) {        return Pattern.compile(regex).matcher(this).replaceFirst(replacement);    }    /**     * Replaces each substring of this string that matches the given <a     * href="../util/regex/Pattern.html#sum">regular expression</a> with the     * given replacement.     *     * <p> An invocation of this method of the form     * <i>str</i><tt>.replaceAll(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>     * yields exactly the same result as the expression     *     * <blockquote><tt>     * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile     * compile}(</tt><i>regex</i><tt>).{@link     * java.util.regex.Pattern#matcher(java.lang.CharSequence)     * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceAll     * replaceAll}(</tt><i>repl</i><tt>)</tt></blockquote>     *     *<p>     * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the     * replacement string may cause the results to be different than if it were     * being treated as a literal replacement string; see     * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.     * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special     * meaning of these characters, if desired.     *     * @param   regex     *          the regular expression to which this string is to be matched     * @param   replacement     *          the string to be substituted for each match     *     * @return  The resulting <tt>String</tt>     *     * @throws  PatternSyntaxException     *          if the regular expression's syntax is invalid     *     * @see java.util.regex.Pattern     *     * @since 1.4     * @spec JSR-51     */    public String replaceAll(String regex, String replacement) {        return Pattern.compile(regex).matcher(this).replaceAll(replacement);    }    /**     * Replaces each substring of this string that matches the literal target     * sequence with the specified literal replacement sequence. The     * replacement proceeds from the beginning of the string to the end, for     * example, replacing "aa" with "b" in the string "aaa" will result in     * "ba" rather than "ab".     *     * @param  target The sequence of char values to be replaced     * @param  replacement The replacement sequence of char values     * @return  The resulting string     * @throws NullPointerException if <code>target</code> or     *         <code>replacement</code> is <code>null</code>.     * @since 1.5     */    public String replace(CharSequence target, CharSequence replacement) {        return Pattern.compile(target.toString(), Pattern.LITERAL).matcher(            this).replaceAll(Matcher.quoteReplacement(replacement.toString()));    }    /**     * Splits this string around matches of the given     * <a href="../util/regex/Pattern.html#sum">regular expression</a>.     *     * <p> The array returned by this method contains each substring of this     * string that is terminated by another substring that matches the given     * expression or is terminated by the end of the string.  The substrings in     * the array are in the order in which they occur in this string.  If the     * expression does not match any part of the input then the resulting array     * has just one element, namely this string.     *     * <p> The <tt>limit</tt> parameter controls the number of times the     * pattern is applied and therefore affects the length of the resulting     * array.  If the limit <i>n</i> is greater than zero then the pattern     * will be applied at most <i>n</i> - 1 times, the array's     * length will be no greater than <i>n</i>, and the array's last entry     * will contain all input beyond the last matched delimiter.  If <i>n</i>     * is non-positive then the pattern will be applied as many times as     * possible and the array can have any length.  If <i>n</i> is zero then     * the pattern will be applied as many times as possible, the array can     * have any length, and trailing empty strings will be discarded.     *     * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the     * following results with these parameters:     *     * <blockquote><table cellpadding=1 cellspacing=0 summary="Split example showing regex, limit, and result">     * <tr>     *     <th>Regex</th>     *     <th>Limit</th>     *     <th>Result</th>     * </tr>     * <tr><td align=center>:</td>     *     <td align=center>2</td>     *     <td><tt>{ "boo", "and:foo" }</tt></td></tr>     * <tr><td align=center>:</td>     *     <td align=center>5</td>     *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>     * <tr><td align=center>:</td>     *     <td align=center>-2</td>     *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>     * <tr><td align=center>o</td>     *     <td align=center>5</td>     *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>     * <tr><td align=center>o</td>     *     <td align=center>-2</td>     *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>     * <tr><td align=center>o</td>     *     <td align=center>0</td>     *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>     * </table></blockquote>     *     * <p> An invocation of this method of the form     * <i>str.</i><tt>split(</tt><i>regex</i><tt>,</tt> <i>n</i><tt>)</tt>     * yields the same result as the expression     *     * <blockquote>     * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile     * compile}<tt>(</tt><i>regex</i><tt>)</tt>.{@link     * java.util.regex.Pattern#split(java.lang.CharSequence,int)     * split}<tt>(</tt><i>str</i><tt>,</tt> <i>n</i><tt>)</tt>     * </blockquote>     *     *     * @param  regex     *         the delimiting regular expression     *     * @param  limit     *         the result threshold, as described above     *     * @return  the array of strings computed by splitting this string     *          around matches of the given regular expression     *     * @throws  PatternSyntaxException     *          if the regular expression's syntax is invalid     *     * @see java.util.regex.Pattern     *     * @since 1.4     * @spec JSR-51     */    public String[] split(String regex, int limit) {        /* fastpath if the regex is a           (1)one-char String and this character is not one of the              RegEx's meta characters ".$|()[{^?*+\\", or           (2)two-char String and the first char is the backslash and              the second is not the ascii digit or ascii letter.        */        char ch = 0;        if (((regex.count == 1 &&             ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||             (regex.length() == 2 &&                                            //没看懂这里根据什么条件分成了两种情况进行split              regex.charAt(0) == '\\' &&              (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&              ((ch-'a')|('z'-ch)) < 0 &&              ((ch-'A')|('Z'-ch)) < 0)) &&            (ch < Character.MIN_HIGH_SURROGATE ||             ch > Character.MAX_LOW_SURROGATE))        {            int off = 0;            int next = 0;            boolean limited = limit > 0;//对处理结果的长度有限制            ArrayList<String> list = new ArrayList<>();            while ((next = indexOf(ch, off)) != -1) { //调用了indexOf方法,判断是否找到ch                if (!limited || list.size() < limit - 1) {//如果找到,并且1.不限长度 或者 2.限长度,但是没有到最后一个                    list.add(substring(off, next)); //调用substring方法                    off = next + 1;    //修改off,继续查找                } else {    // last one                    //assert (list.size() == limit - 1);  //到最后一个,直接截取剩下的字符串                    list.add(substring(off, count));                    off = count;                    break;                }            }            // If no match was found, return this            if (off == 0) //没找到                return new String[] { this };            // Add remaining segment            if (!limited || list.size() < limit)  //不懂为什么还要加这段                list.add(substring(off, count));            // Construct result            int resultSize = list.size();            if (limit == 0)                while (resultSize > 0 && list.get(resultSize-1).length() == 0)//不知这段为什么,去掉最后生成的blank字符,然后为后面的                                                                              //toArray做准备?                    resultSize--;            String[] result = new String[resultSize];            return list.subList(0, resultSize).toArray(result);        }        return Pattern.compile(regex).split(this, limit);    }    /**     * Splits this string around matches of the given <a     * href="../util/regex/Pattern.html#sum">regular expression</a>.     *     * <p> This method works as if by invoking the two-argument {@link     * #split(String, int) split} method with the given expression and a limit     * argument of zero.  Trailing empty strings are therefore not included in     * the resulting array.     *     * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the following     * results with these expressions:     *     * <blockquote><table cellpadding=1 cellspacing=0 summary="Split examples showing regex and result">     * <tr>     *  <th>Regex</th>     *  <th>Result</th>     * </tr>     * <tr><td align=center>:</td>     *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>     * <tr><td align=center>o</td>     *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>     * </table></blockquote>     *     *     * @param  regex     *         the delimiting regular expression     *     * @return  the array of strings computed by splitting this string     *          around matches of the given regular expression     *     * @throws  PatternSyntaxException     *          if the regular expression's syntax is invalid     *     * @see java.util.regex.Pattern     *     * @since 1.4     * @spec JSR-51     */    public String[] split(String regex) {        return split(regex, 0);    }    /**     * Converts all of the characters in this <code>String</code> to lower     * case using the rules of the given <code>Locale</code>.  Case mapping is based     * on the Unicode Standard version specified by the {@link java.lang.Character Character}     * class. Since case mappings are not always 1:1 char mappings, the resulting     * <code>String</code> may be a different length than the original <code>String</code>.     * <p>     * Examples of lowercase  mappings are in the following table:     * <table border="1" summary="Lowercase mapping examples showing language code of locale, upper case, lower case, and description">     * <tr>     *   <th>Language Code of Locale</th>     *   <th>Upper Case</th>     *   <th>Lower Case</th>     *   <th>Description</th>     * </tr>     * <tr>     *   <td>tr (Turkish)</td>     *   <td>\u0130</td>     *   <td>\u0069</td>     *   <td>capital letter I with dot above -> small letter i</td>     * </tr>     * <tr>     *   <td>tr (Turkish)</td>     *   <td>\u0049</td>     *   <td>\u0131</td>     *   <td>capital letter I -> small letter dotless i </td>     * </tr>     * <tr>     *   <td>(all)</td>     *   <td>French Fries</td>     *   <td>french fries</td>     *   <td>lowercased all chars in String</td>     * </tr>     * <tr>     *   <td>(all)</td>     *   <td><img src="doc-files/capiota.gif" alt="capiota"><img src="doc-files/capchi.gif" alt="capchi">     *       <img src="doc-files/captheta.gif" alt="captheta"><img src="doc-files/capupsil.gif" alt="capupsil">     *       <img src="doc-files/capsigma.gif" alt="capsigma"></td>     *   <td><img src="doc-files/iota.gif" alt="iota"><img src="doc-files/chi.gif" alt="chi">     *       <img src="doc-files/theta.gif" alt="theta"><img src="doc-files/upsilon.gif" alt="upsilon">     *       <img src="doc-files/sigma1.gif" alt="sigma"></td>     *   <td>lowercased all chars in String</td>     * </tr>     * </table>     *     * @param locale use the case transformation rules for this locale     * @return the <code>String</code>, converted to lowercase.     * @see     java.lang.String#toLowerCase()     * @see     java.lang.String#toUpperCase()     * @see     java.lang.String#toUpperCase(Locale)     * @since   1.1     */    public String toLowerCase(Locale locale) {        if (locale == null) {            throw new NullPointerException(); //不能传入nulll的Local        }        int     firstUpper;        /* Now check if there are any characters that need to be changed. */
        //检查是否存在需要转换的字符        scan: {            for (firstUpper = 0 ; firstUpper < count; ) {                char c = value[offset+firstUpper];                if ((c >= Character.MIN_HIGH_SURROGATE) &&                    (c <= Character.MAX_HIGH_SURROGATE)) { //这部分没看到                    int supplChar = codePointAt(firstUpper); //获得c的uncode码?                    if (supplChar != Character.toLowerCase(supplChar)) {//判断自身是否与转换成小写的相等                        break scan;                    }                    firstUpper += Character.charCount(supplChar);//这里的递增怎么用这个?                } else {                    if (c != Character.toLowerCase(c)) {//判断自身是否与转换成小写的相等                        break scan;                    }                    firstUpper++;                }            }            return this; //表明不存在需要转换的字符        }        char[]  result = new char[count];        int     resultOffset = 0;  /* result may grow, so i+resultOffset                                    * is the write location in result */        /* Just copy the first few lowerCase characters. */        System.arraycopy(value, offset, result, 0, firstUpper); //先把前面不需要转换的复制到新char数组result        String lang = locale.getLanguage();        boolean localeDependent =            (lang == "tr" || lang == "az" || lang == "lt");        char[] lowerCharArray;        int lowerChar;        int srcChar;        int srcCount;        for (int i = firstUpper; i < count; i += srcCount) {            srcChar = (int)value[offset+i];
            //先分两种情况算好递增量            if ((char)srcChar >= Character.MIN_HIGH_SURROGATE &&                (char)srcChar <= Character.MAX_HIGH_SURROGATE) {                srcChar = codePointAt(i);                srcCount = Character.charCount(srcChar);            } else {                srcCount = 1;            }
            //处理特殊字符转换成小写            if (localeDependent || srcChar == '\u03A3') { // GREEK CAPITAL LETTER SIGMA                  lowerChar = ConditionalSpecialCasing.toLowerCaseEx(this, i, locale);            } else if (srcChar == '\u0130') { // LATIN CAPITAL LETTER I DOT                lowerChar = Character.ERROR;            } else {                lowerChar = Character.toLowerCase(srcChar); //一般字符转换成小写            }            if ((lowerChar == Character.ERROR) ||                (lowerChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {                if (lowerChar == Character.ERROR) {                     if (!localeDependent && srcChar == '\u0130') {                         lowerCharArray =                             ConditionalSpecialCasing.toLowerCaseCharArray(this, i, Locale.ENGLISH);                     } else {                        lowerCharArray =                            ConditionalSpecialCasing.toLowerCaseCharArray(this, i, locale);                     }                } else if (srcCount == 2) {                    resultOffset += Character.toChars(lowerChar, result, i + resultOffset) - srcCount;                    continue;                } else {                    lowerCharArray = Character.toChars(lowerChar);                }                /* Grow result if needed */                int mapLen = lowerCharArray.length;                if (mapLen > srcCount) {                    char[] result2 = new char[result.length + mapLen - srcCount];                    System.arraycopy(result, 0, result2, 0,                        i + resultOffset);                    result = result2;                }                for (int x=0; x<mapLen; ++x) {                    result[i+resultOffset+x] = lowerCharArray[x];                }                resultOffset += (mapLen - srcCount);            } else {                result[i+resultOffset] = (char)lowerChar;            }        }        return new String(0, count+resultOffset, result);    }    /**     * Converts all of the characters in this <code>String</code> to lower     * case using the rules of the default locale. This is equivalent to calling     * <code>toLowerCase(Locale.getDefault())</code>.     * <p>     * <b>Note:</b> This method is locale sensitive, and may produce unexpected     * results if used for strings that are intended to be interpreted locale     * independently.     * Examples are programming language identifiers, protocol keys, and HTML     * tags.     * For instance, <code>"TITLE".toLowerCase()</code> in a Turkish locale     * returns <code>"t\u005Cu0131tle"</code>, where '\u005Cu0131' is the     * LATIN SMALL LETTER DOTLESS I character.     * To obtain correct results for locale insensitive strings, use     * <code>toLowerCase(Locale.ENGLISH)</code>.     * <p>     * @return  the <code>String</code>, converted to lowercase.     * @see     java.lang.String#toLowerCase(Locale)     */    public String toLowerCase() {        return toLowerCase(Locale.getDefault());    }    /**     * Converts all of the characters in this <code>String</code> to upper     * case using the rules of the given <code>Locale</code>. Case mapping is based     * on the Unicode Standard version specified by the {@link java.lang.Character Character}     * class. Since case mappings are not always 1:1 char mappings, the resulting     * <code>String</code> may be a different length than the original <code>String</code>.     * <p>     * Examples of locale-sensitive and 1:M case mappings are in the following table.     * <p>     * <table border="1" summary="Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.">     * <tr>     *   <th>Language Code of Locale</th>     *   <th>Lower Case</th>     *   <th>Upper Case</th>     *   <th>Description</th>     * </tr>     * <tr>     *   <td>tr (Turkish)</td>     *   <td>\u0069</td>     *   <td>\u0130</td>     *   <td>small letter i -> capital letter I with dot above</td>     * </tr>     * <tr>     *   <td>tr (Turkish)</td>     *   <td>\u0131</td>     *   <td>\u0049</td>     *   <td>small letter dotless i -> capital letter I</td>     * </tr>     * <tr>     *   <td>(all)</td>     *   <td>\u00df</td>     *   <td>\u0053 \u0053</td>     *   <td>small letter sharp s -> two letters: SS</td>     * </tr>     * <tr>     *   <td>(all)</td>     *   <td>Fahrvergnügen</td>     *   <td>FAHRVERGNÜGEN</td>     *   <td></td>     * </tr>     * </table>     * @param locale use the case transformation rules for this locale     * @return the <code>String</code>, converted to uppercase.     * @see     java.lang.String#toUpperCase()     * @see     java.lang.String#toLowerCase()     * @see     java.lang.String#toLowerCase(Locale)     * @since   1.1     */    public String toUpperCase(Locale locale) {        if (locale == null) {            throw new NullPointerException();        }        int     firstLower;        /* Now check if there are any characters that need to be changed. */        scan: {            for (firstLower = 0 ; firstLower < count; ) {                int c = (int)value[offset+firstLower];                int srcCount;                if ((c >= Character.MIN_HIGH_SURROGATE) &&                    (c <= Character.MAX_HIGH_SURROGATE)) {                    c = codePointAt(firstLower);                    srcCount = Character.charCount(c);                } else {                    srcCount = 1;                }                int upperCaseChar = Character.toUpperCaseEx(c);                if ((upperCaseChar == Character.ERROR) ||                    (c != upperCaseChar)) {                    break scan;                }                firstLower += srcCount;            }            return this;        }        char[]  result       = new char[count]; /* may grow */        int     resultOffset = 0;  /* result may grow, so i+resultOffset                                    * is the write location in result */        /* Just copy the first few upperCase characters. */        System.arraycopy(value, offset, result, 0, firstLower);        String lang = locale.getLanguage();        boolean localeDependent =            (lang == "tr" || lang == "az" || lang == "lt");        char[] upperCharArray;        int upperChar;        int srcChar;        int srcCount;        for (int i = firstLower; i < count; i += srcCount) {            srcChar = (int)value[offset+i];            if ((char)srcChar >= Character.MIN_HIGH_SURROGATE &&                (char)srcChar <= Character.MAX_HIGH_SURROGATE) {                srcChar = codePointAt(i);                srcCount = Character.charCount(srcChar);            } else {                srcCount = 1;            }            if (localeDependent) {                upperChar = ConditionalSpecialCasing.toUpperCaseEx(this, i, locale);            } else {                upperChar = Character.toUpperCaseEx(srcChar);            }            if ((upperChar == Character.ERROR) ||                (upperChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {                if (upperChar == Character.ERROR) {                    if (localeDependent) {                        upperCharArray =                            ConditionalSpecialCasing.toUpperCaseCharArray(this, i, locale);                    } else {                        upperCharArray = Character.toUpperCaseCharArray(srcChar);                    }                } else if (srcCount == 2) {                    resultOffset += Character.toChars(upperChar, result, i + resultOffset) - srcCount;                    continue;                } else {                    upperCharArray = Character.toChars(upperChar);                }                /* Grow result if needed */                int mapLen = upperCharArray.length;                if (mapLen > srcCount) {                    char[] result2 = new char[result.length + mapLen - srcCount];                    System.arraycopy(result, 0, result2, 0,                        i + resultOffset);                    result = result2;                }                for (int x=0; x<mapLen; ++x) {                    result[i+resultOffset+x] = upperCharArray[x];                }                resultOffset += (mapLen - srcCount);            } else {                result[i+resultOffset] = (char)upperChar;            }        }        return new String(0, count+resultOffset, result);    }    /**     * Converts all of the characters in this <code>String</code> to upper     * case using the rules of the default locale. This method is equivalent to     * <code>toUpperCase(Locale.getDefault())</code>.     * <p>     * <b>Note:</b> This method is locale sensitive, and may produce unexpected     * results if used for strings that are intended to be interpreted locale     * independently.     * Examples are programming language identifiers, protocol keys, and HTML     * tags.     * For instance, <code>"title".toUpperCase()</code> in a Turkish locale     * returns <code>"T\u005Cu0130TLE"</code>, where '\u005Cu0130' is the     * LATIN CAPITAL LETTER I WITH DOT ABOVE character.     * To obtain correct results for locale insensitive strings, use     * <code>toUpperCase(Locale.ENGLISH)</code>.     * <p>     * @return  the <code>String</code>, converted to uppercase.     * @see     java.lang.String#toUpperCase(Locale)     */    public String toUpperCase() {        return toUpperCase(Locale.getDefault());    }    /**     * Returns a copy of the string, with leading and trailing whitespace     * omitted.     * <p>     * If this <code>String</code> object represents an empty character     * sequence, or the first and last characters of character sequence     * represented by this <code>String</code> object both have codes     * greater than <code>'\u0020'</code> (the space character), then a     * reference to this <code>String</code> object is returned.     * <p>     * Otherwise, if there is no character with a code greater than     * <code>'\u0020'</code> in the string, then a new     * <code>String</code> object representing an empty string is created     * and returned.     * <p>     * Otherwise, let <i>k</i> be the index of the first character in the     * string whose code is greater than <code>'\u0020'</code>, and let     * <i>m</i> be the index of the last character in the string whose code     * is greater than <code>'\u0020'</code>. A new <code>String</code>     * object is created, representing the substring of this string that     * begins with the character at index <i>k</i> and ends with the     * character at index <i>m</i>-that is, the result of     * <code>this.substring(<i>k</i>, <i>m</i>+1)</code>.     * <p>     * This method may be used to trim whitespace (as defined above) from     * the beginning and end of a string.     *     * @return  A copy of this string with leading and trailing white     *          space removed, or this string if it has no leading or     *          trailing white space.     */    public String trim() {        int len = count;        int st = 0;        int off = offset;      /* avoid getfield opcode */        char[] val = value;    /* avoid getfield opcode */        while ((st < len) && (val[off + st] <= ' ')) { //查找前面第一个非空字符的位置            st++;        }        while ((st < len) && (val[off + len - 1] <= ' ')) {//查找最后一个非空字符的位置            len--;        }        return ((st > 0) || (len < count)) ? substring(st, len) : this; //看情况是否需要截取,或者直接返回this    }    /**     * This object (which is already a string!) is itself returned.     *     * @return  the string itself.     */    public String toString() {        return this;    }    /**     * Converts this string to a new character array.     *     * @return  a newly allocated character array whose length is the length     *          of this string and whose contents are initialized to contain     *          the character sequence represented by this string.     */    public char[] toCharArray() {        char result[] = new char[count];        getChars(0, count, result, 0);//最终会调用System.arraycopy        return result;    }    /**     * Returns a formatted string using the specified format string and     * arguments.     *     * <p> The locale always used is the one returned by {@link     * java.util.Locale#getDefault() Locale.getDefault()}.     *     * @param  format     *         A <a href="../util/Formatter.html#syntax">format string</a>     *     * @param  args     *         Arguments referenced by the format specifiers in the format     *         string.  If there are more arguments than format specifiers, the     *         extra arguments are ignored.  The number of arguments is     *         variable and may be zero.  The maximum number of arguments is     *         limited by the maximum dimension of a Java array as defined by     *         <cite>The Java™ Virtual Machine Specification</cite>.     *         The behaviour on a     *         <tt>null</tt> argument depends on the <a     *         href="../util/Formatter.html#syntax">conversion</a>.     *     * @throws  IllegalFormatException     *          If a format string contains an illegal syntax, a format     *          specifier that is incompatible with the given arguments,     *          insufficient arguments given the format string, or other     *          illegal conditions.  For specification of all possible     *          formatting errors, see the <a     *          href="../util/Formatter.html#detail">Details</a> section of the     *          formatter class specification.     *     * @throws  NullPointerException     *          If the <tt>format</tt> is <tt>null</tt>     *     * @return  A formatted string     *     * @see  java.util.Formatter     * @since  1.5     */    public static String format(String format, Object ... args) {        return new Formatter().format(format, args).toString();    }    /**     * Returns a formatted string using the specified locale, format string,     * and arguments.     *     * @param  l     *         The {@linkplain java.util.Locale locale} to apply during     *         formatting.  If <tt>l</tt> is <tt>null</tt> then no localization     *         is applied.     *     * @param  format     *         A <a href="../util/Formatter.html#syntax">format string</a>     *     * @param  args     *         Arguments referenced by the format specifiers in the format     *         string.  If there are more arguments than format specifiers, the     *         extra arguments are ignored.  The number of arguments is     *         variable and may be zero.  The maximum number of arguments is     *         limited by the maximum dimension of a Java array as defined by     *         <cite>The Java™ Virtual Machine Specification</cite>.     *         The behaviour on a     *         <tt>null</tt> argument depends on the <a     *         href="../util/Formatter.html#syntax">conversion</a>.     *     * @throws  IllegalFormatException     *          If a format string contains an illegal syntax, a format     *          specifier that is incompatible with the given arguments,     *          insufficient arguments given the format string, or other     *          illegal conditions.  For specification of all possible     *          formatting errors, see the <a     *          href="../util/Formatter.html#detail">Details</a> section of the     *          formatter class specification     *     * @throws  NullPointerException     *          If the <tt>format</tt> is <tt>null</tt>     *     * @return  A formatted string     *     * @see  java.util.Formatter     * @since  1.5     */    public static String format(Locale l, String format, Object ... args) {        return new Formatter(l).format(format, args).toString();    }    /**     * Returns the string representation of the <code>Object</code> argument.     *     * @param   obj   an <code>Object</code>.     * @return  if the argument is <code>null</code>, then a string equal to     *          <code>"null"</code>; otherwise, the value of     *          <code>obj.toString()</code> is returned.     * @see     java.lang.Object#toString()     */    public static String valueOf(Object obj) { //static方法 将传进来的对象转换为string        return (obj == null) ? "null" : obj.toString(); //可以传入null;最终依赖传入的object的toString方法    }    /**     * Returns the string representation of the <code>char</code> array     * argument. The contents of the character array are copied; subsequent     * modification of the character array does not affect the newly     * created string.     *     * @param   data   a <code>char</code> array.     * @return  a newly allocated string representing the same sequence of     *          characters contained in the character array argument.     */    public static String valueOf(char data[]) { //参数为char数组        return new String(data);    }    /**     * Returns the string representation of a specific subarray of the     * <code>char</code> array argument.     * <p>     * The <code>offset</code> argument is the index of the first     * character of the subarray. The <code>count</code> argument     * specifies the length of the subarray. The contents of the subarray     * are copied; subsequent modification of the character array does not     * affect the newly created string.     *     * @param   data     the character array.     * @param   offset   the initial offset into the value of the     *                  <code>String</code>.     * @param   count    the length of the value of the <code>String</code>.     * @return  a string representing the sequence of characters contained     *          in the subarray of the character array argument.     * @exception IndexOutOfBoundsException if <code>offset</code> is     *          negative, or <code>count</code> is negative, or     *          <code>offset+count</code> is larger than     *          <code>data.length</code>.     */    public static String valueOf(char data[], int offset, int count) {        return new String(data, offset, count);    }    /**     * Returns a String that represents the character sequence in the     * array specified.     *     * @param   data     the character array.     * @param   offset   initial offset of the subarray.     * @param   count    length of the subarray.     * @return  a <code>String</code> that contains the characters of the     *          specified subarray of the character array.     */    public static String copyValueOf(char data[], int offset, int count) { //跟上面的valueOf是一样的呀,要这个来干吗的?        // All public String constructors now copy the data.        return new String(data, offset, count);    }    /**     * Returns a String that represents the character sequence in the     * array specified.     *     * @param   data   the character array.     * @return  a <code>String</code> that contains the characters of the     *          character array.     */    public static String copyValueOf(char data[]) {        return copyValueOf(data, 0, data.length);    }    /**     * Returns the string representation of the <code>boolean</code> argument.     *     * @param   b   a <code>boolean</code>.     * @return  if the argument is <code>true</code>, a string equal to     *          <code>"true"</code> is returned; otherwise, a string equal to     *          <code>"false"</code> is returned.     */    public static String valueOf(boolean b) { //原来这里又为boolean单独处理的。        return b ? "true" : "false";    }    /**     * Returns the string representation of the <code>char</code>     * argument.     *     * @param   c   a <code>char</code>.     * @return  a string of length <code>1</code> containing     *          as its single character the argument <code>c</code>.     */    public static String valueOf(char c) {        char data[] = {c};        return new String(0, 1, data);    }    /**     * Returns the string representation of the <code>int</code> argument.     * <p>     * The representation is exactly the one returned by the     * <code>Integer.toString</code> method of one argument.     *     * @param   i   an <code>int</code>.     * @return  a string representation of the <code>int</code> argument.     * @see     java.lang.Integer#toString(int, int)     */    public static String valueOf(int i) {        return Integer.toString(i);  //最终还是调用了Integer.toString,还不如自己直接调用呢    }    /**     * Returns the string representation of the <code>long</code> argument.     * <p>     * The representation is exactly the one returned by the     * <code>Long.toString</code> method of one argument.     *     * @param   l   a <code>long</code>.     * @return  a string representation of the <code>long</code> argument.     * @see     java.lang.Long#toString(long)     */    public static String valueOf(long l) {  //这里也是        return Long.toString(l);    }    /**     * Returns the string representation of the <code>float</code> argument.     * <p>     * The representation is exactly the one returned by the     * <code>Float.toString</code> method of one argument.     *     * @param   f   a <code>float</code>.     * @return  a string representation of the <code>float</code> argument.     * @see     java.lang.Float#toString(float)     */    public static String valueOf(float f) {        return Float.toString(f);    }    /**     * Returns the string representation of the <code>double</code> argument.     * <p>     * The representation is exactly the one returned by the     * <code>Double.toString</code> method of one argument.     *     * @param   d   a <code>double</code>.     * @return  a  string representation of the <code>double</code> argument.     * @see     java.lang.Double#toString(double)     */    public static String valueOf(double d) {        return Double.toString(d);    }    /**     * Returns a canonical representation for the string object.     * <p>     * A pool of strings, initially empty, is maintained privately by the     * class <code>String</code>.     * <p>     * When the intern method is invoked, if the pool already contains a     * string equal to this <code>String</code> object as determined by     * the {@link #equals(Object)} method, then the string from the pool is     * returned. Otherwise, this <code>String</code> object is added to the     * pool and a reference to this <code>String</code> object is returned.     * <p>     * It follows that for any two strings <code>s</code> and <code>t</code>,     * <code>s.intern() == t.intern()</code> is <code>true</code>     * if and only if <code>s.equals(t)</code> is <code>true</code>.     * <p>     * All literal strings and string-valued constant expressions are     * interned. String literals are defined in section 3.10.5 of the     * <cite>The Java™ Language Specification</cite>.     *     * @return  a string that has the same contents as this string, but is     *          guaranteed to be from a pool of unique strings.     */    public native String intern();  //这个为什么需要native呢?}
觉得这篇文章里面的内容需要看看
http://renxiangzyq.iteye.com/blog/549554


原创粉丝点击