操作系统实现之 cpu 工作模式

来源:互联网 发布:任那 知乎 编辑:程序博客网 时间:2024/05/10 13:18

在微处理器的历史上,第一款微处理器芯片4004是由Intel推出的,那是一个4位的微处理器。在4004之后,intel推出了一款8位处理器8080,它有1个主累加器(寄存器A)和6个次累加器(寄存器B,C,D,E,H和L),几个次累加器可以配对(如组成BC, DE或HL)用来访问16位的内存地址,也就是说8080可访问到64K内的地址空间。另外,那时还没有段的概念,访问内存都要通过绝对地址,因此程序中的地址必须进行硬编码(给出具体地址),而且也难以重定位,这就不难理解为什么当时的软件大都是些可控性弱,结构简陋,数据处理量小的工控程序了。

 

几年后,intel开发出了16位的处理器8086,这个处理器标志着Intel X86王朝的开始,这也是内存寻址的第一次飞跃。之所以说这是一次飞跃,是因为8086处理器引入了一个重要概念—

8086处理器的寻址目标是1M大的内存空间,于是它的地址总线扩展到了20位。但是,一个问题摆在了Intel设计人员面前,虽然地址总线宽度是20位的,但是CPU中“算术逻辑运算单元(ALU)”的宽度,即数据总线却只有16位,也就是可直接加以运算的指针长度是16位的。如何填补这个空隙呢?可能的解决方案有多种,例如,可以像一些8位CPU中那样,增设一些20位的指令专用于地址运算和操作,但是那样又会造成CPU内存结构的不均匀。又例如,当时的PDP-11小型机也是16位的,但是其内存管理单元(MMU)可以将16位的地址映射到24位的地址空间。受此启发,Intel设计了一种在当时看来不失为巧妙的方法,即分段的方法。

   为了支持分段,Intel在8086 CPU中设置了四个段寄存器:CS、DS、SS和ES,分别用于可执行代码段、数据段、堆栈段及其他段。每个段寄存器都是16位的,对应于地址总线中的高16位。每条“访内”指令中的内部地址也都是16位的,但是在送上地址总线之前,CPU内部自动地把它与某个段寄存器中的内容相加。因为段寄存器中的内容对应于20位地址总线中的高16位(也就是把段寄存器左移4位),所以相加时实际上是内存总线中的高12位与段寄存器中的16位相加,而低4位保留不变,这样就形成一个20位的实际地址,也就实现了从16位内存地址到20位实际地址的转换,或者叫“映射”。

段式内存管理带来了显而易见的优势,程序的地址不再需要硬编码了,调试错误也更容易定位了,更可贵的是支持更大的内存地址。程序员开始获得了自由。

     技术的发展不会就此止步。intel的80286处理器于1982年问世了,它的地址总线位数增加到了24位,因此可以访问到16M的内存空间。更重要的是从此开始引进了一个全新理念—保护模式。这种模式下内存段的访问受到了限制。访问内存时不能直接从段寄存器中获得段的起始地址了,而需要经过额外转换和检查(从此你不能再随意存取数据段,具体保护和实现我们后面讲述)。

为了和过去兼容,80286内存寻址可以有两种方式,一种是先进的保护模式,另一种是老式的8086方式,被成为实模式。系统启动时处理器处于实模式,只能访问1M空间,经过处理可进入保护模式,访问空间扩大到16M,但是要想从保护模式返回到实模式,你只有重新启动机器。还有一个致命的缺陷是80286虽然扩大了访问空间,但是每个段的大小还是64k,程序规模仍受到限制。因此这个先天低能儿注定命不会很久。很快它就被天资卓越的兄弟——80386代替了。

80386是一个32位的CPU,也就是它的ALU数据总线是32位的,同时它的地址总线与数据总线宽度一致,也是32位,因此,其寻址能力达到4GB。对于内存来说,似乎是足够了。从理论上说,当数据总线与地址总线宽度一致时,其CPU结构应该简洁明了。但是,80386无法做到这一点。作为X86产品系列的一员,80386必须维持那些段寄存器的存在,还必须支持实模式,同时又要能支持保护模式,这给Intel的设计人员带来很大的挑战。

Intel选择了在段寄存器的基础上构筑保护模式,并且保留段寄存器16位。在保护模式下,它的段范围不再受限于64K,可以达到4G。这一下真正解放了软件工程师,他们不必再费尽心思去压缩程序规模,软件功能也因此迅速提升。

从8086的16位到80386的32位处理器,这看起来是处理器位数的变化,但实质上是处理器体系结构的变化,从寻址方式上说,就是从“实模式”到“保护模式”的变化。从80386以后,Intel的CPU经历了80486、Pentium、PentiumII、PentiumIII等型号,虽然它们在速度上提高了好几个数量级,功能上也有不少改进,但基本上属于同一种系统结构的改进与加强,而无本质的变化,所以我们把80386以后的处理器统称为IA32(32 Bit Intel Architecture)。



从80386开始,cpu有三种工作方式:实模式,保护模式和虚拟8086模式。只有在刚刚启动的时候是real-mode,等到linux操作系统运行起来以后就运行在保护模式。


实模式下

只能访问地址在1M以下的内存称为常规内存,我们把地址在1M 以上的内存称为扩展内存。


实模式:(即实地址访问模式)它是Intel公司80286及以后的x86(80386,8048680586)兼容处理器(CPU)的一种操作模式。实模式被特殊定义为20位地址内存可访问空间上,这就意味着它的容量是220次幂(1M)的可访问内存空间(物理内存和BIOS-ROM),软件可通过这些地址直接访问BIOS程序和外围硬件。实模式下处理器没有硬件级的内存保护概念和多道任务的工作模式。但是为了向下兼容,所以80286及以后的x86系列兼容处理器仍然是开机启动时工作在实模式下。80186和早期的处理器仅有一种操作模式,就是后来我们所定义的实模式。实模式虽然能访问到1M的地址空间,但是由于BIOS的映射作用(即BIOS占用了部分空间地址资源),所以真正能使用的物理内存空间(内存条),也就是在640k924k之间。1M地址空间组成是由16位的段地址和16位的段内偏移地址组成的。用公式表示为:物理地址=左移4位的段地址+偏移地址。

 

286处理器体系结构引入了地址保护模式的概念,处理器能够对内存及一些其他外围设备做硬件级的保护设置(保护设置实质上就是屏蔽一些地址的访问)。使用这些新的特性,然而必不可少一些额外的在80186及以前处理器没有的操作规程。自从最初的x86微处理器规格以后,它对程序开发完全向下兼容,80286芯片被制作成启动时继承了以前版本芯片的特性,工作在实模式下,在这种模式下实际上是关闭了新的保护功能特性,因此能使以往的软件继续工作在新的芯片下。直到今天,甚至最新的x86处理器都是在计算机加电启动时都是工作在实模式下,它能运行为以前处理器芯片写的程序.

 

DOS操作系统(例如MS-DOS,DR-DOS)工作在实模式下,微软Windows早期的版本(它本质上是运行在DOS上的图形用户界面应用程序,实际上本身并不是一个操作系统)也是运行在实模式下,直到Windows3.0,它运行期间既有实模式又有保护模式,所以说它是一种混合模式工作。它的保护模式运行有两种不同意义(因为80286并没有完全地实现80386及以后的保护模式功能)

 

1〉“标准保护模式”:这就是程序运行在保护模式下;

2〉“虚拟保护模式(实质上还是实模式,是实模式上模拟的保护模式)”:它也使用32位地址寻址方式。Windows3.1彻底删除了对实模式的支持。在80286处理器芯片以后,Windows3.1成为主流操作系统(Windows/80286不是主流产品)。目前差不多所有的X86系列处理器操作系统(LinuxWindows95 and laterOS/2等)都是在启动时进行处理器设置而进入保护模式的。

 

实模式工作机理:

1>对于8086/8088来说计算实际地址是用绝对地址对1M求模。8086的地址线的物理结构:20根,也就是它可以物理寻址的内存范围为2^20个字节,即1 M空间,但由于8086/8088所使用的寄存器都是16位,能够表示的地址范围只有0-64K,这和1M地址空间来比较也太小了,所以为了在8086/8088下能够访问1M内存,Intel采取了分段寻址的模式:16位段基地址:16位偏移EA。其绝对地址计算方法为:16位基地址左移4+16位偏移=20位地址。 比如:DS=1000H EA=FFFFH那么绝对地址就为:10000H +
0FFFFH = 1FFFFH 地址单元
。通过这种方法来实现使用16位寄存器访问1M的地址空间,这种技术是处理器内部实现的,通过上述分段技术模式,能够表示的最大内存为:
FFFFh: FFFFh=FFFF0h+FFFFh=10FFEFh=1M+64K-16Bytes1M多余出来的部分被称做高端内存区HMA。但8086/8088只有20位地址线,只能够访问1M地址范围的数据,所以如果访问100000h~10FFEFh之间的内存(大于1M空间),则必须有第21根地址线来参与寻址(8086/8088没有)。因此,当程序员给出超过1M100000H-10FFEFH)的地址时,因为逻辑上正常,系统并不认为其访问越界而产生异常,而是自动从0开始计算,也就是说系统计算实际地址的时候是按照对1M求模的方式进行的,这种技术被称为wrap-around

 

 

2>对于80286或以上的CPU通过A20 GATE来控制A20地址线 技术发展到了80286,虽然系统的地址总线由原来的20根发展为24根,这样能够访问的内存可以达到2^24=16M,但是Intel在设计80286时提出的目标是向下兼容,所以在实模式下,系统所表现的行为应该和8086/8088所表现的完全一样,也就是说,在实模式下,80386以及后续系列应该和8086/8088完全兼容仍然使用A20地址线。所以说80286芯片存在一个BUG:它开设A20地址线。如果程序员访问100000H-10FFEFH之间的内存,系统将实际访问这块内存(没有wrap-around技术),而不是象8086/8088一样从0开始。我们来看一副图:


为了解决上述兼容性问题,IBM使用键盘控制器上剩余的一些输出线来管理第21根地址线(从0开始数是第20根) 的有效性,被称为A20 Gate

1>如果A20 Gate被打开,则当程序员给出100000H-10FFEFH之间的地址的时候,系统将真正访问这块内存区域;

2如果A20 Gate被禁止,则当程序员给出100000H-10FFEFH之间的地址的时候,系统仍然使用8086/8088的方式即取模方式(8086仿真)。绝大多数IBM PC兼容机默认的A20 Gate是被禁止的。现在许多新型PC上存在直接通过BIOS功能调用来控制A20 Gate的功能。

上面所述的内存访问模式都是实模式,在80286以及更高系列的PC中,即使A20 Gate被打开,在实模式下所能够访问的内存最大也只能为10FFEFH,尽管它们的地址总线所能够访问的能力都大大超过这个限制。为了能够访问10FFEFH以上的内存,则必须进入保护模式。



保护模式下,

全部32条地址线有效,可寻址高达4G字节的物理地址空间;

扩充的存储器分段管理机制和可选的存储器分页管理机制,不仅为存储器共享和保护提供了硬件支持,而且为实现虚拟存储器提供了硬件支持;
支持多任务,能够快速地进行任务切换和保护任务环境;
4个特权级和完善的特权检查机制,既能实现资源共享又能保证代码和数据的安全和保密及任务的隔离;

支持虚拟8086方式,便于执行8086程序。



保护模式:经常缩写为p-mode,Intel iAPX 286程序员参考手册中(iAPX
286Intel 80286的另一种叫法)
它又被称作为虚拟地址保护模式。经管在Intel 80286手册中已经提出了虚地址保护模式,但实际上它只是一个指引,真正的32位地址出现在Intel 80386上。保护模式本身是80286及以后兼容处理器序列之后产成的一种操作模式,它具有许多特性设计为提高系统的多道任务和系统的稳定性。例如内存的保护,分页机制和硬件虚拟存储的支持。现代多数的x86处理器操作系统都运行在保护模式下,包括Linux, Free BSD, Windows
3.0(它也运行在实模式下,为了和Windows 2.x应用程序兼容)及以后的版本。

 

80286及以后的处理器另一种工作模式是实模式(仅当系统启动的一瞬间),本着向下兼容的原则屏蔽保护模式特性,从而容许老的软件能够运行在新的芯片上。作为一个设计规范,所有的x86系列处理器,除嵌入式Intel80387之外,都是系统启动工作在实模式下,确保遗留下的操作系统向下兼容。它们都必须被启动程序(操作系统程序最初运行代码)重新设置而相应进入保护模式的,在这之前任何的保护模式特性都是无效的。在现代计算机中,这种匹配进入保护模式是操作系统启动时最前沿的动作之一。

 

在被调停的多道任务程序中,它可以从新工作在实模式下是相当可能的。保护模式的特性是阻止被其他任务或系统内核破坏已经不健全的程序的运行,保护模式也有对硬件的支持,例如中断运行程序,移动运行进程文档到另一个进程和置空多任务的保护功能。

 

386及以后系列处理器不仅具有保护模式又具有32位寄存器,结果导致了处理功能的混乱,因为80286虽然支持保护模式,但是它的寄存器都是16位的,它是通过自身程序设定而模拟出的32位,并非32位寄存器处理。归咎于这种混乱现象,它促使Windows/386及以后的版本彻底抛弃80286的虚拟保护模式,以后保护模式的操作系统都是运行在80386以上,不再运行在80286(尽管80286模式支持保护模式),所以说80286是一个过渡芯片,它是一个过渡产品。

 

尽管286386处理器能够实现保护模式和兼容以前的版本,但是内存的1M以上空间还是不易存取,由于内存地址的回绕,IBM PC XT (现以废弃)设计一种模拟系统,它能过欺骗手段访问到1M以上的地址空间,就是开通了A20地址线。在保护模式里,前32个中断为处理器异常预留,例如,中断0D(十进制13)常规保护故障和中断00是除数为零异常。

 

如果要访问更多的内存,则必须进入保护模式,那么,在保护模式下,A20
Gate对于内存访问有什么影响呢?

为了搞清楚这一点,我们先来看一看A20的工作原理。A20,从它的名字就可以看出来,其实它就是对于A20(从0开始数)的特殊处理(也就是对第21根地址线的处理)。如果A20 Gate被禁止,对于80286来说,其地址为24根地址线,其地址表示为EFFFFF;对于80386极其随后的32根地址线芯片来说,其地址表示为FFEFFFFF。这种表示的意思是:

1>如果A20
Gate被禁止。则其第A20CPU做地址访问的时候是无效的,永远只能被作为0。所以,在保护模式下,如果A20
Gate被禁止,则可以访问的内存只能是奇数1M段,即1M,3M,5M…,也就是00000-FFFFF, 200000-2FFFFF,300000-3FFFFF…

2如果A20 Gate被打开。则其第20-bit是有效的,其值既可以是0,又可以是1。那么就可以使A20线传递实际的地址信号。如果A20 Gate被打开,则可以访问的内存则是连续的。



保护模式同实模式的根本区别是进程内存受保护与否。可寻址空间的区别只是这一原因的果。
实模式将整个物理内存看成分段的区域,程序代码和数据位于不同区域,系统程序和用户程序没有区别对待,而且每一个指针都是指向"实在"的物理地址。这样一来,用户程序的一个指针如果指向了系统程序区域或其他用户程序区域,并改变了值,那么对于这个被修改的系统程序或用户程序,其后果就很可能是灾难性的。为了克服这种低劣的内存管理方式,处理器厂商开发出保护模式。这样,物理内存地址不能直接被程序访问,程序内部的地址(虚拟地址)要由操作系统转化为物理地址去访问,程序对此一无所知。至此,进程(这时我们可以称程序为进程了)有了严格的边界,任何其他进程根本没有办法访问不属于自己的物理内存区域,甚至在自己的虚拟地址范围内也不是可以任意访问的,因为有一些虚拟区域已经被放进一些公共系统运行库。这些区域也不能随便修改,若修改就会有: SIGSEGV(linux 段错误);非法内存访问对话框(windows 对话框)。

实模式和保护模式的区别:从表面上看,保护模式和实模式并没有太大的区别,二者都使用了内存段、中断和设备驱动来处理硬件,但二者有很多不同之处。我们知道,在实模式中内存被划分成段,每个段的大小为64KB,而这样的段地址可以用16位来表示。内存段的处理是通过和段寄存器相关联的内部机制来处理的,这些段寄存器(CSDS SSES)的内容形成了物理地址的一部分。具体来说,最终的物理地址是由16位的段地址和16位的段内偏移地址组成的。用公式表示为:物理地址=左移4位的段地址+偏移地址。

在保护模式下,段是通过一系列被称之为描述符表的表所定义的。段寄存器存储的是指向这些表的指针。用于定义内存段的表有两种:全局描述符表(GDT)和局部描述符表(LDT)GDT是一个段描述符数组,其中包含所有应用程序都可以使用的基本描述符。在实模式中,段长是固定的(64KB),而在保护模式中,段长是可变的,其最大可达4GBLDT也是段描述符的一个数组。与GDT不同,LDT是一个段,其中存放的是局部的、不需要全局共享的段描述符。每一个操作系统都必须定义一个GDT,而每一个正在运行的任务都会有一个相应的LDT。每一个描述符的长度是8个字节,格式如图3所示。当段寄存器被加载的时候,段基地址就会从相应的表入口获得。描述符的内容会被存储在一个程序员不可见的影像寄存器(shadow register)之中,以便下一次同一个段可以使用该信息而不用每次都到表中提取。物理地址由16位或者32位的偏移加上影像寄存器中的基址组成。实模式和保护模式的不同可以从下图很清楚地看出来。

实模式下寻址方式

 

保护模式下寻址方式





虚拟8086模式

是运行在保护模式中的实模式,为了在32位保护模式下执行纯16位程序。它不是一个真正的CPU模式,还属于保护模式。


事实上,现在的64位奔腾4处理器,拥有三种基本模式和一种扩展模式,
    a)基本模式:
      ****保护模式:纯32位保护执行环境。
      ****实模式:纯16位无保护执行环境。
      ****系统管理模式:当SMI引脚为有效进入系统管理模式,首先保存当前的CPU上下文。它有独立的地址空间,用来执行电源管理或系统安全方面的指令。
    b)扩展模式:****IA-32e模式,64位操作系统运行在该模式。该模式有两种子模式:
         1)**兼容模式:该模式下,64位操作系统运行在32位兼容环境,能正常运行16,32位应用程序就像基本的保护模式一样,访问32位地址空间,但不能运行纯16位实模式程序(就是不能运行虚拟86模式程序了)。
         2)**64位模式:在该模式下,处理器完全执行64位指令,使用64位地址空间和64操作数,运行16,32位程序必须切换到兼容模式。
    IA-32e子模式的切换完全基于代码段寄存器。这样一来,运行在IA-32e模式中(64位)的OS完全可以无缝的运行所有16,32,64为应用程序,通过设置32位后的CS。



reference:

protected mode software architecture