Linux设备驱动剖析之SPI(二)

来源:互联网 发布:js把字符串转为json 编辑:程序博客网 时间:2024/05/07 23:14

原贴地址:http://www.cnblogs.com/lknlfy/p/3265031.html


-------------------------------------------------------------------------------------

957至962行,一个SPI控制器用一个master来描述。这里使用SPI核心的spi_alloc_master函数请求分配master。它在drivers/spi/spi.c文件中定义:

复制代码
00000471 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)00000472 {00000473     struct spi_master    *master;00000474 00000475     if (!dev)00000476         return NULL;00000477 00000478     master = kzalloc(size + sizeof *master, GFP_KERNEL);00000479     if (!master)00000480         return NULL;00000481 00000482     device_initialize(&master->dev);00000483     master->dev.class = &spi_master_class;00000484     master->dev.parent = get_device(dev);00000485     spi_master_set_devdata(master, &master[1]);00000486 00000487     return master;00000488 }
复制代码

478至480行,这里分配的内存大小是*master加size,包含了两部分内存。

482行,设备模型中的初始设备函数,不说。

483行,spi_master_class在SPI子系统初始化的时候就已经注册好了。

484行,设置当前设备的父设备,关于设备模型的。

485行,&master[1]就是master之后的另一部分内存的起始地址。

     回到s3c64xx_spi_probe函数,966行,就是取出刚才申请的第二部分内存的起始地址。

966至980行,根据预先定义的变量、函数进行填充。

983行,有点意思,说明该驱动支持哪些SPI模式。

985至997行,写过Linux驱动都应该知道,IO内存映射。

999至1003行,SPI IO管脚配置,将相应的IO管脚设置为SPI功能。

1006至1032行,使能SPI时钟。

1034至1040行,创建单个线程的工作队列,用于数据收发操作。

1043行,硬件初始化,初始化SPI控制器寄存器。

1045至1048行,锁,工作队列等初始化。

1050至1054行,spi_register_master在drivers/spi/spi.c文件中定义:

复制代码
00000511 int spi_register_master(struct spi_master *master)00000512 {00000513     static atomic_t        dyn_bus_id = ATOMIC_INIT((1<<15) - 1);00000514     struct device        *dev = master->dev.parent;00000515     int            status = -ENODEV;00000516     int            dynamic = 0;00000517 00000518     if (!dev)00000519         return -ENODEV;00000520 00000521     /* even if it's just one always-selected device, there must00000522      * be at least one chipselect00000523      */00000524     if (master->num_chipselect == 0)00000525         return -EINVAL;00000526 00000527     /* convention:  dynamically assigned bus IDs count down from the max */00000528     if (master->bus_num < 0) {00000529         /* FIXME switch to an IDR based scheme, something like00000530          * I2C now uses, so we can't run out of "dynamic" IDs00000531          */00000532         master->bus_num = atomic_dec_return(&dyn_bus_id);00000533         dynamic = 1;00000534     }00000535 00000536     spin_lock_init(&master->bus_lock_spinlock);00000537     mutex_init(&master->bus_lock_mutex);00000538     master->bus_lock_flag = 0;00000539 00000540     /* register the device, then userspace will see it.00000541      * registration fails if the bus ID is in use.00000542      */00000543     dev_set_name(&master->dev, "spi%u", master->bus_num);00000544     status = device_add(&master->dev);00000545     if (status < 0)00000546         goto done;00000547     dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),00000548             dynamic ? " (dynamic)" : "");00000549 00000550     /* populate children from any spi device tables */00000551     scan_boardinfo(master);00000552     status = 0;00000553 00000554     /* Register devices from the device tree */00000555     of_register_spi_devices(master);00000556 done:00000557     return status;00000558 }
复制代码

524行,一个SPI控制器至少有一个片选,因此片选数为0则出错。

528至534行,如果总线号小于0则动态分配一个总线号。

543至548行,把master加入到设备模型中。

551行,scan_boardinfo函数同样是在driver/spi/spi.c中定义:

复制代码
00000414 static void scan_boardinfo(struct spi_master *master)00000415 {00000416     struct boardinfo    *bi;00000417 00000418     mutex_lock(&board_lock);00000419     list_for_each_entry(bi, &board_list, list) {00000420         struct spi_board_info    *chip = bi->board_info;00000421         unsigned        n;00000422 00000423         for (n = bi->n_board_info; n > 0; n--, chip++) {00000424             if (chip->bus_num != master->bus_num)00000425                 continue;00000426             /* NOTE: this relies on spi_new_device to00000427              * issue diagnostics when given bogus inputs00000428              */00000429             (void) spi_new_device(master, chip);00000430         }00000431     }00000432     mutex_unlock(&board_lock);00000433 }
复制代码

419至431做了两件事情,首先遍历board_list这个链表,每找到一个成员就将它的总线号与master的总线号进行比较,如果相等则调用spi_new_device函数创建一个spi设备。

复制代码
00000336 struct spi_device *spi_new_device(struct spi_master *master,00000337                   struct spi_board_info *chip)00000338 {00000339     struct spi_device    *proxy;00000340     int            status;00000341 00000342     /* NOTE:  caller did any chip->bus_num checks necessary.00000343      *00000344      * Also, unless we change the return value convention to use00000345      * error-or-pointer (not NULL-or-pointer), troubleshootability00000346      * suggests syslogged diagnostics are best here (ugh).00000347      */00000348 00000349     proxy = spi_alloc_device(master);00000350     if (!proxy)00000351         return NULL;00000352 00000353     WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));00000354 00000355     proxy->chip_select = chip->chip_select;00000356     proxy->max_speed_hz = chip->max_speed_hz;00000357     proxy->mode = chip->mode;00000358     proxy->irq = chip->irq;00000359     strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));00000360     proxy->dev.platform_data = (void *) chip->platform_data;00000361     proxy->controller_data = chip->controller_data;00000362     proxy->controller_state = NULL;00000363 00000364     status = spi_add_device(proxy);00000365     if (status < 0) {00000366         spi_dev_put(proxy);00000367         return NULL;00000368     }00000369 00000370     return proxy;00000371 }
复制代码

349至351行,spi_alloc_device函数的定义:

复制代码
00000229 struct spi_device *spi_alloc_device(struct spi_master *master)00000230 {00000231     struct spi_device    *spi;00000232     struct device        *dev = master->dev.parent;00000233 00000234     if (!spi_master_get(master))00000235         return NULL;00000236 00000237     spi = kzalloc(sizeof *spi, GFP_KERNEL);00000238     if (!spi) {00000239         dev_err(dev, "cannot alloc spi_device\n");00000240         spi_master_put(master);00000241         return NULL;00000242     }00000243 00000244     spi->master = master;00000245     spi->dev.parent = dev;00000246     spi->dev.bus = &spi_bus_type;00000247     spi->dev.release = spidev_release;00000248     device_initialize(&spi->dev);00000249     return spi;00000250 }
复制代码

234至242行,错误检测和分配内存。

246行,该spi设备属于SPI子系统初始化时注册的那条叫“spi”的总线。

248行,设备模型方面的初始化,不说。

     回到spi_new_device函数,355至362行,是一些赋值,其中359行比较关键,设备名字拷贝,362行,之前说过了,设置为NULL。看364行spi_add_device函数的定义:

复制代码
00000262 int spi_add_device(struct spi_device *spi)00000263 {00000264     static DEFINE_MUTEX(spi_add_lock);00000265     struct device *dev = spi->master->dev.parent;00000266     struct device *d;00000267     int status;00000268 00000269     /* Chipselects are numbered 0..max; validate. */00000270     if (spi->chip_select >= spi->master->num_chipselect) {00000271         dev_err(dev, "cs%d >= max %d\n",00000272             spi->chip_select,00000273             spi->master->num_chipselect);00000274         return -EINVAL;00000275     }00000276 00000277     /* Set the bus ID string */00000278     dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),00000279             spi->chip_select);00000280 00000281 00000282     /* We need to make sure there's no other device with this00000283      * chipselect **BEFORE** we call setup(), else we'll trash00000284      * its configuration.  Lock against concurrent add() calls.00000285      */00000286     mutex_lock(&spi_add_lock);00000287 00000288     d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));00000289     if (d != NULL) {00000290         dev_err(dev, "chipselect %d already in use\n",00000291                 spi->chip_select);00000292         put_device(d);00000293         status = -EBUSY;00000294         goto done;00000295     }00000296 00000297     /* Drivers may modify this initial i/o setup, but will00000298      * normally rely on the device being setup.  Devices00000299      * using SPI_CS_HIGH can't coexist well otherwise...00000300      */00000301     status = spi_setup(spi);00000302     if (status < 0) {00000303         dev_err(dev, "can't %s %s, status %d\n",00000304                 "setup", dev_name(&spi->dev), status);00000305         goto done;00000306     }00000307 00000308     /* Device may be bound to an active driver when this returns */00000309     status = device_add(&spi->dev);00000310     if (status < 0)00000311         dev_err(dev, "can't %s %s, status %d\n",00000312                 "add", dev_name(&spi->dev), status);00000313     else00000314         dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));00000315 00000316 done:00000317     mutex_unlock(&spi_add_lock);00000318     return status;00000319 }
复制代码

270至275行,片选号是从0开始的,如果大于或者等于片选数的话则返回出错。

288至295行,遍历spi总线,看是否已经注册过该设备。

301至306行,spi_setup函数的定义:

复制代码
00000645 int spi_setup(struct spi_device *spi)00000646 {00000647     unsigned    bad_bits;00000648     int        status;00000649 00000650     /* help drivers fail *cleanly* when they need options00000651      * that aren't supported with their current master00000652      */00000653     bad_bits = spi->mode & ~spi->master->mode_bits;00000654     if (bad_bits) {00000655         dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",00000656             bad_bits);00000657         return -EINVAL;00000658     }00000659 00000660     if (!spi->bits_per_word)00000661         spi->bits_per_word = 8;00000662 00000663     status = spi->master->setup(spi);00000664 00000665     dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"00000666                 "%u bits/w, %u Hz max --> %d\n",00000667             (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),00000668             (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",00000669             (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",00000670             (spi->mode & SPI_3WIRE) ? "3wire, " : "",00000671             (spi->mode & SPI_LOOP) ? "loopback, " : "",00000672             spi->bits_per_word, spi->max_speed_hz,00000673             status);00000674 00000675     return status;00000676 }
复制代码

653至658行,如果驱动不支持该设备的工作模式则返回出错。

663行,调用控制器驱动里的s3c64xx_spi_setup函数,只看前一部分代码:

复制代码
00000795 static int s3c64xx_spi_setup(struct spi_device *spi)00000796 {00000797     struct s3c64xx_spi_csinfo *cs = spi->controller_data;00000798     struct s3c64xx_spi_driver_data *sdd;00000799     struct s3c64xx_spi_info *sci;00000800     struct spi_message *msg;00000801     u32 psr, speed;00000802     unsigned long flags;00000803     int err = 0;00000804 00000805     if (cs == NULL || cs->set_level == NULL) {00000806         dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);00000807         return -ENODEV;00000808     }00000809
复制代码

从797行就可以知道在实例化struct spi_board_info时,其controller_data成员就应该指向struct s3c64xx_spi_csinfo的对象。

       spi_setup函数结束了,回到spi_add_device函数,309至314行,将该设备加入到设备模型。一直后退,回到spi_register_master函数,就剩下555行of_register_spi_devices这个函数,由于本文所讲的驱动没有使用到设备树方面的内容,所以该函数里什么也没做,直接返回。

      到这里,SPI控制器驱动的初始化过程已经说完了。接下来要说的是SPI设备驱动。其实Linux中已经实现了一个通用的SPI设备驱动,另外还有一个是用IO口模拟的SPI驱动,在这里,只说前者。

初始化函数是在drivers/spi/spidev.c文件中定义:

复制代码
00000658 static int __init spidev_init(void)00000659 {00000660     int status;00000661 00000662     /* Claim our 256 reserved device numbers.  Then register a class00000663      * that will key udev/mdev to add/remove /dev nodes.  Last, register00000664      * the driver which manages those device numbers.00000665      */00000666     BUILD_BUG_ON(N_SPI_MINORS > 256);00000667     00000668     status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);00000669     if (status < 0)00000670         return status;00000671 00000672     00000673     spidev_class = class_create(THIS_MODULE, "spidev");00000674     if (IS_ERR(spidev_class)) {00000675         unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);00000676         return PTR_ERR(spidev_class);00000677     }00000678 00000679     status = spi_register_driver(&spidev_spi_driver);00000680     if (status < 0) {00000681         class_destroy(spidev_class);00000682         unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);00000683     }00000684     return status;00000685 }
复制代码

668至670行,注册字符设备,参数spidev_fops是struct file_operations的实例,这里就可以知道,用户程序的open、write等操作最终会调用这里面的函数。

673至677行,创建spidev这一类设备,为后面自动生成设备节点做准备。

679至684行,注册spi设备驱动,spi_register_driver函数的定义在drivers/spi/spi.c中:

复制代码
00000182 int spi_register_driver(struct spi_driver *sdrv)00000183 {00000184     sdrv->driver.bus = &spi_bus_type;00000185     if (sdrv->probe)00000186         sdrv->driver.probe = spi_drv_probe;00000187     if (sdrv->remove)00000188         sdrv->driver.remove = spi_drv_remove;00000189     if (sdrv->shutdown)00000190         sdrv->driver.shutdown = spi_drv_shutdown;00000191     return driver_register(&sdrv->driver);00000192 }
复制代码

184行,该驱动所属的总线。185至190行,一些函数指针的赋值。191行,将驱动注册进设备模型,注册成功的话就会在总线上寻找设备,调用总线上的match函数,看能否与之匹配起来,匹配成功的话,驱动中的probe函数就会被调用。

参数spidev_spi_driver是struct spi_driver的实例,它的定义为:

复制代码
00000641 static struct spi_driver spidev_spi_driver = {00000642     .driver = {00000643         .name =        "spidev",00000644         .owner =    THIS_MODULE,00000645     },00000646     .probe =    spidev_probe,00000647     .remove =    __devexit_p(spidev_remove),00000648 00000649     /* NOTE:  suspend/resume methods are not necessary here.00000650      * We don't do anything except pass the requests to/from00000651      * the underlying controller.  The refrigerator handles00000652      * most issues; the controller driver handles the rest.00000653      */00000654 };
复制代码

下面看spidev_probe函数。在drivers/spi/spidev.c中定义的:

复制代码
00000565 static int __devinit spidev_probe(struct spi_device *spi)00000566 {00000567     struct spidev_data    *spidev;00000568     int            status;00000569     unsigned long        minor;00000570 00000571     /* Allocate driver data */00000572     spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);00000573     if (!spidev)00000574         return -ENOMEM;00000575 00000576     /* Initialize the driver data */00000577     spidev->spi = spi;00000578     spin_lock_init(&spidev->spi_lock);00000579     mutex_init(&spidev->buf_lock);00000580 00000581     INIT_LIST_HEAD(&spidev->device_entry);00000582 00000583     /* If we can allocate a minor number, hook up this device.00000584      * Reusing minors is fine so long as udev or mdev is working.00000585      */00000586     mutex_lock(&device_list_lock);00000587     00000588     minor = find_first_zero_bit(minors, N_SPI_MINORS);00000589     00000590     if (minor < N_SPI_MINORS) {00000591         struct device *dev;00000592         00000593         spidev->devt = MKDEV(SPIDEV_MAJOR, minor);00000594         00000595         dev = device_create(spidev_class, &spi->dev, spidev->devt,00000596                     spidev, "spidev%d.%d",00000597                     spi->master->bus_num, spi->chip_select);00000598         status = IS_ERR(dev) ? PTR_ERR(dev) : 0;00000599     } else {00000600         dev_dbg(&spi->dev, "no minor number available!\n");00000601         status = -ENODEV;00000602     }00000603     if (status == 0) {00000604         00000605         set_bit(minor, minors);00000606         00000607         list_add(&spidev->device_entry, &device_list);00000608     }00000609     mutex_unlock(&device_list_lock);00000610 00000611     if (status == 0)00000612         spi_set_drvdata(spi, spidev);00000613     else00000614         kfree(spidev);00000615 00000616     return status;00000617 }
复制代码