Linux设备驱动剖析之SPI(三)

来源:互联网 发布:java jdk源码分析书籍 编辑:程序博客网 时间:2024/04/28 01:43

原贴地址:www.cnblogs.com/lknlfy/p/3265054.html


---------------------------------------------------------------------------------------

572至574行,分配内存,注意对象的类型是struct spidev_data,看下它在drivers/spi/spidev.c中的定义:

复制代码
00000075 struct spidev_data {00000076     dev_t            devt;00000077     spinlock_t        spi_lock;00000078     struct spi_device    *spi;00000079     struct list_head    device_entry;00000080 00000081     /* buffer is NULL unless this device is open (users > 0) */00000082     struct mutex        buf_lock;00000083     unsigned        users;00000084     u8            *buffer;00000085 };
复制代码

76行,设备号。79行,设备链表,所有采用此驱动的设备将连成一个链表。83行,计数,也即是此设备被open的次数。

回到spidev_probe函数,577至586行,一些锁和链表的初始化。588行,从名字上就可以知道,就是找到第一个为0的位,第一个参数minors的定义:

00000054 #define N_SPI_MINORS            32    /* ... up to 256 */00000055 00000056 static DECLARE_BITMAP(minors, N_SPI_MINORS);

DECLARE_BITMAP是一个宏,定义如下:

#define DECLARE_BITMAP(name,bits) \    unsigned long name[BITS_TO_LONGS(bits)]

将宏展开后是这样的,unsigned long minors[1],其实就是定义一个只有一个元素的无符号长整形数组miniors。

590至593行,如果找到了非0位,就将它作为次设备号与之前注册的主设备号生成设备号。

595至598行,创建设备,并生成设备节点,设备节点在/dev目录下,名字的形式为“spidevx.x”。

603至608行,创建设备成功后,将相应的位置1,表示该次设备号已经被使用,同时将该设备加入到设备链表。

611至614行,将设备的私有数据指针指向该设备。

      至此,SPI设备驱动的初始化过程也说完了。下面就以应用程序的操作顺序来说,假设是从open-->write这个过程。下面先看驱动中open函数的实现,同样在drivers/spi/spidev.c:

复制代码
00000477 static int spidev_open(struct inode *inode, struct file *filp)00000478 {00000479     struct spidev_data    *spidev;00000480     int            status = -ENXIO;00000481 00000482     mutex_lock(&device_list_lock);00000483 00000484     00000485     list_for_each_entry(spidev, &device_list, device_entry) {00000486         if (spidev->devt == inode->i_rdev) {00000487             status = 0;00000488             break;00000489         }00000490     }00000491     if (status == 0) {00000492         if (!spidev->buffer) {00000493             spidev->buffer = kmalloc(bufsiz, GFP_KERNEL);00000494             if (!spidev->buffer) {00000495                 dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");00000496                 status = -ENOMEM;00000497             }00000498         }00000499         if (status == 0) {00000500             spidev->users++;00000501             filp->private_data = spidev;00000502             nonseekable_open(inode, filp);00000503         }00000504     } else00000505         pr_debug("spidev: nothing for minor %d\n", iminor(inode));00000506 00000507     mutex_unlock(&device_list_lock);00000508     return status;00000509 }
复制代码

485至490行,遍历设备链表,每找到一个设备就将它的设备号与打开文件的设备号进行比较,相等的话表示查找成功。

491至505行,查找成功后就分配读写数据内存,使用计数加1,设置文件私有数据指针指向查找到的设备,以后在驱动的write、read函数里就可以把它取出来。

     接下来是write函数的定义:

复制代码
00000190 static ssize_t00000191 spidev_write(struct file *filp, const char __user *buf,00000192         size_t count, loff_t *f_pos)00000193 {00000194     struct spidev_data    *spidev;00000195     ssize_t            status = 0;00000196     unsigned long        missing;00000197 00000198     /* chipselect only toggles at start or end of operation */00000199     if (count > bufsiz)00000200         return -EMSGSIZE;00000201 00000202     spidev = filp->private_data;00000203 00000204     mutex_lock(&spidev->buf_lock);00000205     missing = copy_from_user(spidev->buffer, buf, count);00000206     if (missing == 0) {00000207         status = spidev_sync_write(spidev, count);00000208     } else00000209         status = -EFAULT;00000210     mutex_unlock(&spidev->buf_lock);00000211 00000212     return status;00000213 }
复制代码

199至200行,应用程序写入的数据不能大于驱动中缓冲区的大小,默认为4096个字节。

202行,指向文件的私有数据。

205行,拷贝用户空间的数据到内核空间。

207行,spidev_sync_write的定义:

复制代码
00000130 static inline ssize_t00000131 spidev_sync_write(struct spidev_data *spidev, size_t len)00000132 {00000133     struct spi_transfer    t = {00000134             .tx_buf        = spidev->buffer,00000135             .len        = len,00000136         };00000137     struct spi_message    m;00000138 00000139     spi_message_init(&m);00000140     spi_message_add_tail(&t, &m);00000141     return spidev_sync(spidev, &m);00000142 }
复制代码

133行,struct spi_transfer的定义在include/linux/spi/spi.h:

复制代码
00000427 struct spi_transfer {00000428     /* it's ok if tx_buf == rx_buf (right?)00000429      * for MicroWire, one buffer must be null00000430      * buffers must work with dma_*map_single() calls, unless00000431      *   spi_message.is_dma_mapped reports a pre-existing mapping00000432      */00000433     const void    *tx_buf;00000434     void        *rx_buf;00000435     unsigned    len;00000436 00000437     dma_addr_t    tx_dma;00000438     dma_addr_t    rx_dma;00000439 00000440     unsigned    cs_change:1;00000441     u8        bits_per_word;00000442     u16        delay_usecs;00000443     u32        speed_hz;00000444 00000445     struct list_head transfer_list;00000446 };
复制代码

433至435行,发送、接收缓冲区和长度。437和438行,发送和接收的DMA地址。

440行,传输完成后是否改变片选信号。

441行,如果为0则使用驱动的默认值。

442行,传输完成后等待多长时间(毫秒)再改变片选信号。

443行,将多个传输连成一个链表。

     回到spidev_sync_write函数的137行,在spi.h中定义的struct spi_message:

复制代码
00000476 struct spi_message {00000477     struct list_head    transfers;00000478 00000479     struct spi_device    *spi;00000480 00000481     unsigned        is_dma_mapped:1;00000482 00000483     /* REVISIT:  we might want a flag affecting the behavior of the00000484      * last transfer ... allowing things like "read 16 bit length L"00000485      * immediately followed by "read L bytes".  Basically imposing00000486      * a specific message scheduling algorithm.00000487      *00000488      * Some controller drivers (message-at-a-time queue processing)00000489      * could provide that as their default scheduling algorithm.  But00000490      * others (with multi-message pipelines) could need a flag to00000491      * tell them about such special cases.00000492      */00000493 00000494     /* completion is reported through a callback */00000495     void            (*complete)(void *context);00000496     void            *context;00000497     unsigned        actual_length;00000498     int            status;00000499 00000500     /* for optional use by whatever driver currently owns the00000501      * spi_message ...  between calls to spi_async and then later00000502      * complete(), that's the spi_master controller driver.00000503      */00000504     struct list_head    queue;00000505     void            *state;00000506 };
复制代码

477行,一个message可能包含多个transfer,因此用链表将这些transfer连起来。

479行,这次message所使用的spi设备。

481行,是否采用DMA的标志。

495行,传输完成后的回调函数指针。496行,回调函数的参数。

497行,这次message成功传输的字节数。

504和505行,当前驱动拥有的message。

      回到spidev_sync_write函数,139行,spi.h中的内联函数spi_message_init:

00000508 static inline void spi_message_init(struct spi_message *m)00000509 {00000510     memset(m, 0, sizeof *m);00000511     INIT_LIST_HEAD(&m->transfers);00000512 }

很简单,清0内存和初始化message的transfer链表。

140行,spi_message_add_tail也是spi.h中的内联函数:

00000514 static inline void00000515 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)00000516 {00000517     list_add_tail(&t->transfer_list, &m->transfers);00000518 }

将transfer加入到链表尾。

141行,spidev_sync函数是在drivers/spi/spidev.c中定义的:

复制代码
00000105 static ssize_t00000106 spidev_sync(struct spidev_data *spidev, struct spi_message *message)00000107 {00000108     DECLARE_COMPLETION_ONSTACK(done);00000109     int status;00000110 00000111     message->complete = spidev_complete;00000112     message->context = &done;00000113 00000114     spin_lock_irq(&spidev->spi_lock);00000115     if (spidev->spi == NULL)00000116         status = -ESHUTDOWN;00000117     else00000118         status = spi_async(spidev->spi, message);00000119     spin_unlock_irq(&spidev->spi_lock);00000120 00000121     if (status == 0) {00000122         wait_for_completion(&done);00000123         status = message->status;00000124         if (status == 0)00000125             status = message->actual_length;00000126     }00000127     return status;00000128 }
复制代码

108行,定义并初始化一个完成量,完成量是Linux的一种同步机制。

111行,spidev_complete函数里就用来唤醒等待completion,定义如下:

00000100 static void spidev_complete(void *arg)00000101 {00000102     complete(arg);00000103 }

112行,作为spidev_complete函数的参数。

118行,调用drivers/spi/spi.c里的spi_async函数,从函数名知道,这是异步实现的。为什么是异步的?往下看就知道了。

复制代码
00000737 int spi_async(struct spi_device *spi, struct spi_message *message)00000738 {00000739     struct spi_master *master = spi->master;00000740     int ret;00000741     unsigned long flags;00000742 00000743     spin_lock_irqsave(&master->bus_lock_spinlock, flags);00000744 00000745     if (master->bus_lock_flag)00000746         ret = -EBUSY;00000747     else00000748         ret = __spi_async(spi, message);00000749 00000750     spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);00000751 00000752     return ret;00000753 }
复制代码

745行,如果master所在的总线被锁住了,那么就返回忙。

748行,看__spi_async函数的定义:

复制代码
00000679 static int __spi_async(struct spi_device *spi, struct spi_message *message)00000680 {00000681     struct spi_master *master = spi->master;00000682 00000683     /* Half-duplex links include original MicroWire, and ones with00000684      * only one data pin like SPI_3WIRE (switches direction) or where00000685      * either MOSI or MISO is missing.  They can also be caused by00000686      * software limitations.00000687      */00000688     if ((master->flags & SPI_MASTER_HALF_DUPLEX)00000689             || (spi->mode & SPI_3WIRE)) {00000690         struct spi_transfer *xfer;00000691         unsigned flags = master->flags;00000692 00000693         list_for_each_entry(xfer, &message->transfers, transfer_list) {00000694             if (xfer->rx_buf && xfer->tx_buf)00000695                 return -EINVAL;00000696             if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)00000697                 return -EINVAL;00000698             if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)00000699                 return -EINVAL;00000700         }00000701     }00000702 00000703     message->spi = spi;00000704     message->status = -EINPROGRESS;00000705     return master->transfer(spi, message);00000706 }
复制代码

688至701行,如果master设置了SPI_MASTER_HALF_DUPLEX标志,或者spi设备使用的是3线模式,那么就对message里的每一个transfer的发送和接收buf做一些检查。

705行,调用的是具体的SPI控制器驱动里的函数,这里是drivers/spi/spi_s3c64xx.c里的s3c64xx_spi_transfer函数:

复制代码
00000763 static int s3c64xx_spi_transfer(struct spi_device *spi,00000764                         struct spi_message *msg)00000765 {00000766     struct s3c64xx_spi_driver_data *sdd;00000767     unsigned long flags;00000768 00000769     sdd = spi_master_get_devdata(spi->master);00000770 00000771     spin_lock_irqsave(&sdd->lock, flags);00000772 00000773     if (sdd->state & SUSPND) {00000774         spin_unlock_irqrestore(&sdd->lock, flags);00000775         return -ESHUTDOWN;00000776     }00000777 00000778     msg->status = -EINPROGRESS;00000779     msg->actual_length = 0;00000780 00000781     list_add_tail(&msg->queue, &sdd->queue);00000782 00000783     queue_work(sdd->workqueue, &sdd->work);00000784 00000785     spin_unlock_irqrestore(&sdd->lock, flags);00000786 00000787     return 0;00000788 }
复制代码

原创粉丝点击