Android之rild进程启动源码分析

来源:互联网 发布:网络教育自我鉴定 编辑:程序博客网 时间:2024/06/05 08:13

Android 电话系统框架介绍

android系统中rild运行在AP上,AP上的应用通过rild发送AT指令给BPBP接收到信息后又通过rild传送给AP。AP与BP之间有两种通信方式:

1.Solicited Response:ApBp发送请求,BpAp发送回复,该类型的AT指令及其回调函数以数组的形式存放在Ril_commands.h文件中:

    {数组中的索引号,请求回调函数,响应回调函数}

    {0, NULL, NULL},                   //none    {RIL_REQUEST_GET_SIM_STATUS, dispatchVoid, responseSimStatus},    {RIL_REQUEST_ENTER_SIM_PIN, dispatchStrings, responseInts},    {RIL_REQUEST_ENTER_SIM_PUK, dispatchStrings, responseInts},    {RIL_REQUEST_ENTER_SIM_PIN2, dispatchStrings, responseInts},    {RIL_REQUEST_ENTER_SIM_PUK2, dispatchStrings, responseInts},    {RIL_REQUEST_CHANGE_SIM_PIN, dispatchStrings, responseInts},    {RIL_REQUEST_CHANGE_SIM_PIN2, dispatchStrings, responseInts},    {RIL_REQUEST_ENTER_NETWORK_DEPERSONALIZATION, dispatchStrings, responseInts},    {RIL_REQUEST_GET_CURRENT_CALLS, dispatchVoid, responseCallList},    {RIL_REQUEST_DIAL, dispatchDial, responseVoid},    {RIL_REQUEST_GET_IMSI, dispatchStrings, responseString},    {RIL_REQUEST_HANGUP, dispatchInts, responseVoid},    {RIL_REQUEST_HANGUP_WAITING_OR_BACKGROUND, dispatchVoid, responseVoid},    {RIL_REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND, dispatchVoid, responseVoid},    {RIL_REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE, dispatchVoid, responseVoid},    {RIL_REQUEST_CONFERENCE, dispatchVoid, responseVoid},    {RIL_REQUEST_UDUB, dispatchVoid, responseVoid},    {RIL_REQUEST_LAST_CALL_FAIL_CAUSE, dispatchVoid, responseInts},    {RIL_REQUEST_SIGNAL_STRENGTH, dispatchVoid, responseRilSignalStrength},    {RIL_REQUEST_VOICE_REGISTRATION_STATE, dispatchVoid, responseStrings},    {RIL_REQUEST_DATA_REGISTRATION_STATE, dispatchVoid, responseStrings},    {RIL_REQUEST_OPERATOR, dispatchVoid, responseStrings},    {RIL_REQUEST_RADIO_POWER, dispatchInts, responseVoid},    {RIL_REQUEST_DTMF, dispatchString, responseVoid},    {RIL_REQUEST_SEND_SMS, dispatchStrings, responseSMS},    {RIL_REQUEST_SEND_SMS_EXPECT_MORE, dispatchStrings, responseSMS},    {RIL_REQUEST_SETUP_DATA_CALL, dispatchDataCall, responseSetupDataCall},    {RIL_REQUEST_SIM_IO, dispatchSIM_IO, responseSIM_IO},    {RIL_REQUEST_SEND_USSD, dispatchString, responseVoid},    {RIL_REQUEST_CANCEL_USSD, dispatchVoid, responseVoid},    {RIL_REQUEST_GET_CLIR, dispatchVoid, responseInts},    {RIL_REQUEST_SET_CLIR, dispatchInts, responseVoid},    {RIL_REQUEST_QUERY_CALL_FORWARD_STATUS, dispatchCallForward, responseCallForwards},    {RIL_REQUEST_SET_CALL_FORWARD, dispatchCallForward, responseVoid},    {RIL_REQUEST_QUERY_CALL_WAITING, dispatchInts, responseInts},    {RIL_REQUEST_SET_CALL_WAITING, dispatchInts, responseVoid},    {RIL_REQUEST_SMS_ACKNOWLEDGE, dispatchInts, responseVoid},    {RIL_REQUEST_GET_IMEI, dispatchVoid, responseString},    {RIL_REQUEST_GET_IMEISV, dispatchVoid, responseString},    {RIL_REQUEST_ANSWER,dispatchVoid, responseVoid},    {RIL_REQUEST_DEACTIVATE_DATA_CALL, dispatchStrings, responseVoid},    {RIL_REQUEST_QUERY_FACILITY_LOCK, dispatchStrings, responseInts},    {RIL_REQUEST_SET_FACILITY_LOCK, dispatchStrings, responseInts},    {RIL_REQUEST_CHANGE_BARRING_PASSWORD, dispatchStrings, responseVoid},    {RIL_REQUEST_QUERY_NETWORK_SELECTION_MODE, dispatchVoid, responseInts},    {RIL_REQUEST_SET_NETWORK_SELECTION_AUTOMATIC, dispatchVoid, responseVoid},    {RIL_REQUEST_SET_NETWORK_SELECTION_MANUAL, dispatchString, responseVoid},    {RIL_REQUEST_QUERY_AVAILABLE_NETWORKS , dispatchVoid, responseStrings},    {RIL_REQUEST_DTMF_START, dispatchString, responseVoid},    {RIL_REQUEST_DTMF_STOP, dispatchVoid, responseVoid},    {RIL_REQUEST_BASEBAND_VERSION, dispatchVoid, responseString},    {RIL_REQUEST_SEPARATE_CONNECTION, dispatchInts, responseVoid},    {RIL_REQUEST_SET_MUTE, dispatchInts, responseVoid},    {RIL_REQUEST_GET_MUTE, dispatchVoid, responseInts},    {RIL_REQUEST_QUERY_CLIP, dispatchVoid, responseInts},    {RIL_REQUEST_LAST_DATA_CALL_FAIL_CAUSE, dispatchVoid, responseInts},    {RIL_REQUEST_DATA_CALL_LIST, dispatchVoid, responseDataCallList},    {RIL_REQUEST_RESET_RADIO, dispatchVoid, responseVoid},    {RIL_REQUEST_OEM_HOOK_RAW, dispatchRaw, responseRaw},    {RIL_REQUEST_OEM_HOOK_STRINGS, dispatchStrings, responseStrings},    {RIL_REQUEST_SCREEN_STATE, dispatchInts, responseVoid},    {RIL_REQUEST_SET_SUPP_SVC_NOTIFICATION, dispatchInts, responseVoid},    {RIL_REQUEST_WRITE_SMS_TO_SIM, dispatchSmsWrite, responseInts},    {RIL_REQUEST_DELETE_SMS_ON_SIM, dispatchInts, responseVoid},    {RIL_REQUEST_SET_BAND_MODE, dispatchInts, responseVoid},    {RIL_REQUEST_QUERY_AVAILABLE_BAND_MODE, dispatchVoid, responseInts},    {RIL_REQUEST_STK_GET_PROFILE, dispatchVoid, responseString},    {RIL_REQUEST_STK_SET_PROFILE, dispatchString, responseVoid},    {RIL_REQUEST_STK_SEND_ENVELOPE_COMMAND, dispatchString, responseString},    {RIL_REQUEST_STK_SEND_TERMINAL_RESPONSE, dispatchString, responseVoid},    {RIL_REQUEST_STK_HANDLE_CALL_SETUP_REQUESTED_FROM_SIM, dispatchInts, responseVoid},    {RIL_REQUEST_EXPLICIT_CALL_TRANSFER, dispatchVoid, responseVoid},    {RIL_REQUEST_SET_PREFERRED_NETWORK_TYPE, dispatchInts, responseVoid},    {RIL_REQUEST_GET_PREFERRED_NETWORK_TYPE, dispatchVoid, responseInts},    {RIL_REQUEST_GET_NEIGHBORING_CELL_IDS, dispatchVoid, responseCellList},    {RIL_REQUEST_SET_LOCATION_UPDATES, dispatchInts, responseVoid},    {RIL_REQUEST_CDMA_SET_SUBSCRIPTION_SOURCE, dispatchInts, responseVoid},    {RIL_REQUEST_CDMA_SET_ROAMING_PREFERENCE, dispatchInts, responseVoid},    {RIL_REQUEST_CDMA_QUERY_ROAMING_PREFERENCE, dispatchVoid, responseInts},    {RIL_REQUEST_SET_TTY_MODE, dispatchInts, responseVoid},    {RIL_REQUEST_QUERY_TTY_MODE, dispatchVoid, responseInts},    {RIL_REQUEST_CDMA_SET_PREFERRED_VOICE_PRIVACY_MODE, dispatchInts, responseVoid},    {RIL_REQUEST_CDMA_QUERY_PREFERRED_VOICE_PRIVACY_MODE, dispatchVoid, responseInts},    {RIL_REQUEST_CDMA_FLASH, dispatchString, responseVoid},    {RIL_REQUEST_CDMA_BURST_DTMF, dispatchStrings, responseVoid},    {RIL_REQUEST_CDMA_VALIDATE_AND_WRITE_AKEY, dispatchString, responseVoid},    {RIL_REQUEST_CDMA_SEND_SMS, dispatchCdmaSms, responseSMS},    {RIL_REQUEST_CDMA_SMS_ACKNOWLEDGE, dispatchCdmaSmsAck, responseVoid},    {RIL_REQUEST_GSM_GET_BROADCAST_SMS_CONFIG, dispatchVoid, responseGsmBrSmsCnf},    {RIL_REQUEST_GSM_SET_BROADCAST_SMS_CONFIG, dispatchGsmBrSmsCnf, responseVoid},    {RIL_REQUEST_GSM_SMS_BROADCAST_ACTIVATION, dispatchInts, responseVoid},    {RIL_REQUEST_CDMA_GET_BROADCAST_SMS_CONFIG, dispatchVoid, responseCdmaBrSmsCnf},    {RIL_REQUEST_CDMA_SET_BROADCAST_SMS_CONFIG, dispatchCdmaBrSmsCnf, responseVoid},    {RIL_REQUEST_CDMA_SMS_BROADCAST_ACTIVATION, dispatchInts, responseVoid},    {RIL_REQUEST_CDMA_SUBSCRIPTION, dispatchVoid, responseStrings},    {RIL_REQUEST_CDMA_WRITE_SMS_TO_RUIM, dispatchRilCdmaSmsWriteArgs, responseInts},    {RIL_REQUEST_CDMA_DELETE_SMS_ON_RUIM, dispatchInts, responseVoid},    {RIL_REQUEST_DEVICE_IDENTITY, dispatchVoid, responseStrings},    {RIL_REQUEST_EXIT_EMERGENCY_CALLBACK_MODE, dispatchVoid, responseVoid},    {RIL_REQUEST_GET_SMSC_ADDRESS, dispatchVoid, responseString},    {RIL_REQUEST_SET_SMSC_ADDRESS, dispatchString, responseVoid},    {RIL_REQUEST_REPORT_SMS_MEMORY_STATUS, dispatchInts, responseVoid},    {RIL_REQUEST_REPORT_STK_SERVICE_IS_RUNNING, dispatchVoid, responseVoid},    {RIL_REQUEST_CDMA_GET_SUBSCRIPTION_SOURCE, dispatchCdmaSubscriptionSource, responseInts},    {RIL_REQUEST_ISIM_AUTHENTICATION, dispatchString, responseString},    {RIL_REQUEST_ACKNOWLEDGE_INCOMING_GSM_SMS_WITH_PDU, dispatchStrings, responseVoid},    {RIL_REQUEST_STK_SEND_ENVELOPE_WITH_STATUS, dispatchString, responseSIM_IO},    {RIL_REQUEST_VOICE_RADIO_TECH, dispatchVoiceRadioTech, responseInts},

2.unSolicited Response:Bp主动给Ap发送事件,该类型的AT指令及其回调函数以数组的形式存放在ril_unsol_commands.h文件中:

    {数组中的索引号,响应回调函数,类型}

    {RIL_UNSOL_RESPONSE_RADIO_STATE_CHANGED, responseVoid, WAKE_PARTIAL},    {RIL_UNSOL_RESPONSE_CALL_STATE_CHANGED, responseVoid, WAKE_PARTIAL},    {RIL_UNSOL_RESPONSE_VOICE_NETWORK_STATE_CHANGED, responseVoid, WAKE_PARTIAL},    {RIL_UNSOL_RESPONSE_NEW_SMS, responseString, WAKE_PARTIAL},    {RIL_UNSOL_RESPONSE_NEW_SMS_STATUS_REPORT, responseString, WAKE_PARTIAL},    {RIL_UNSOL_RESPONSE_NEW_SMS_ON_SIM, responseInts, WAKE_PARTIAL},    {RIL_UNSOL_ON_USSD, responseStrings, WAKE_PARTIAL},    {RIL_UNSOL_ON_USSD_REQUEST, responseVoid, DONT_WAKE},    {RIL_UNSOL_NITZ_TIME_RECEIVED, responseString, WAKE_PARTIAL},    {RIL_UNSOL_SIGNAL_STRENGTH, responseRilSignalStrength, DONT_WAKE},    {RIL_UNSOL_DATA_CALL_LIST_CHANGED, responseDataCallList, WAKE_PARTIAL},    {RIL_UNSOL_SUPP_SVC_NOTIFICATION, responseSsn, WAKE_PARTIAL},    {RIL_UNSOL_STK_SESSION_END, responseVoid, WAKE_PARTIAL},    {RIL_UNSOL_STK_PROACTIVE_COMMAND, responseString, WAKE_PARTIAL},    {RIL_UNSOL_STK_EVENT_NOTIFY, responseString, WAKE_PARTIAL},    {RIL_UNSOL_STK_CALL_SETUP, responseInts, WAKE_PARTIAL},    {RIL_UNSOL_SIM_SMS_STORAGE_FULL, responseVoid, WAKE_PARTIAL},    {RIL_UNSOL_SIM_REFRESH, responseSimRefresh, WAKE_PARTIAL},    {RIL_UNSOL_CALL_RING, responseCallRing, WAKE_PARTIAL},    {RIL_UNSOL_RESPONSE_SIM_STATUS_CHANGED, responseVoid, WAKE_PARTIAL},    {RIL_UNSOL_RESPONSE_CDMA_NEW_SMS, responseCdmaSms, WAKE_PARTIAL},    {RIL_UNSOL_RESPONSE_NEW_BROADCAST_SMS, responseRaw, WAKE_PARTIAL},    {RIL_UNSOL_CDMA_RUIM_SMS_STORAGE_FULL, responseVoid, WAKE_PARTIAL},    {RIL_UNSOL_RESTRICTED_STATE_CHANGED, responseInts, WAKE_PARTIAL},    {RIL_UNSOL_ENTER_EMERGENCY_CALLBACK_MODE, responseVoid, WAKE_PARTIAL},    {RIL_UNSOL_CDMA_CALL_WAITING, responseCdmaCallWaiting, WAKE_PARTIAL},    {RIL_UNSOL_CDMA_OTA_PROVISION_STATUS, responseInts, WAKE_PARTIAL},    {RIL_UNSOL_CDMA_INFO_REC, responseCdmaInformationRecords, WAKE_PARTIAL},    {RIL_UNSOL_OEM_HOOK_RAW, responseRaw, WAKE_PARTIAL},    {RIL_UNSOL_RINGBACK_TONE, responseInts, WAKE_PARTIAL},    {RIL_UNSOL_RESEND_INCALL_MUTE, responseVoid, WAKE_PARTIAL},    {RIL_UNSOL_CDMA_SUBSCRIPTION_SOURCE_CHANGED, responseInts, WAKE_PARTIAL},    {RIL_UNSOL_CDMA_PRL_CHANGED, responseInts, WAKE_PARTIAL},    {RIL_UNSOL_EXIT_EMERGENCY_CALLBACK_MODE, responseVoid, WAKE_PARTIAL},    {RIL_UNSOL_RIL_CONNECTED, responseInts, WAKE_PARTIAL},    {RIL_UNSOL_VOICE_RADIO_TECH_CHANGED, responseInts, WAKE_PARTIAL},


不同手机厂商使用的AT命令不完全相同,为了保密,APBP之间通过各厂商自己的相关动态库来通信。

RIL模块由rild守护进程、libril.solibrefrence.so三部分组成:

  1.rild模块被编译为一个可执行文件,实现一个main函数作为整个ril模块的入口点。在初始化时使用dlopen打开librefrence_ril.so,从中取出并执行RIL_Init函数,得到RIL_RadioFunctions指针,通过RIL_register()函数注册到libril.so库中,其源码结构如下:

 

 2.libril.so是共享库,主要负责同上层的通信工作,接收ril的请求,并传递给librefrence_ril.so,同时将librefrence_ril.so返回的消息送给调用进程,源码结构如下所示:

 

3.librefrence_ril.so是由各手机厂商自己实现,在rild进程运行中通过dlopen方式加载,主要负责跟modem硬件通信,转换来自libril.so的请求为AT命令,同时监听Modem的反馈信息给libril.so



Android的电话系统主要分为三个部分,java层的各种电话相关应用,java层的Phone Service,主要为上层提供API,同时与native进行通信,可以看做为电话系统的客户端,native层的电话服务进程RILD,负责为上层提供各种电话功能服务,直接与modem进行交互:

Android电话系统设计框架图:

由于Android 开发者使用的Modem 是不一样的,各种指令格式,初始化序列都可能不一样,所以为了消除这些差别,Android 设计者将ril 做了一个抽象,使用一个虚拟电话的概念,不同modem相关的AT指令或者通信协议编译成相应的动态链接库.so文件,Rild 是具体的AT 指令合成者和应答解析者。


Android电话系统代码结构图:


RILD框架设计

在android的电话系统中,在native层实现了电话服务的服务端,由RILD服务与modem的交互,在java层实现电话的客户端,本文主要介绍电话系统的服务端RILD进程,以下是RILD的设计框架图:



RILD源码分析

接下来通过源码对RILD的整个框架进行详细介绍。

在kernel启动完成后,将启动第一个应用进程Init进程,在android之Init进程启动过程源码分析一文中对init进程的启动流程进行了详细的介绍。init进程在启动过程中将读取init.rc文件来启动一些重量级的native服务,rild进程就是通过配置在init.rc中来启动的。

service ril-daemon /system/bin/rild    class main    socket rild stream 660 root radio    socket rild-debug stream 660 radio system    user root    group radio cache inet misc audio sdcard_rw log

RILD进程入口函数分析

接下来给出的是RILD进程启动的时序图:

hardware\ril\rild\rild.c

int main(int argc, char **argv){    const char * rilLibPath = NULL;    char **rilArgv;    void *dlHandle;    const RIL_RadioFunctions *(*rilInit)(const struct RIL_Env *, int, char **);    const RIL_RadioFunctions *funcs;    char libPath[PROPERTY_VALUE_MAX];    unsigned char hasLibArgs = 0;    int i;  umask(S_IRGRP | S_IWGRP | S_IXGRP | S_IROTH | S_IWOTH | S_IXOTH);  //rild启动无参数    for (i = 1; i < argc   {        if (0 == strcmp(argv[i], "-l") && (argc - i > 1)) {            rilLibPath = argv[i + 1];            i += 2;        } else if (0 == strcmp(argv[i], "--")) {            i++;            hasLibArgs = 1;            break;        } else {            usage(argv[0]);        }    }  if (rilLibPath == NULL) {      //通过Android属性系统读取属性"rild.libpath"的值,即lib库的存放路径        if ( 0 == property_get(LIB_PATH_PROPERTY, libPath, NULL)) {            goto done;        } else {            rilLibPath = libPath;        }  }##################################################################################                            判断是否为模拟器###################################################################################if 1    {        static char*  arg_overrides[3];        static char   arg_device[32];        int           done = 0;#define  REFERENCE_RIL_PATH  "/system/lib/libreference-ril.so"        /* first, read /proc/cmdline into memory */        char          buffer[1024], *p, *q;        int           len;        int           fd = open("/proc/cmdline",O_RDONLY);        if (fd < 0) {            LOGD("could not open /proc/cmdline:%s", strerror(errno));            goto OpenLib;        }        //读取/proc/cmdline文件中的内容        do {            len = read(fd,buffer,sizeof(buffer)); }        while (len == -1 && errno == EINTR);        if (len < 0) {            LOGD("could not read /proc/cmdline:%s", strerror(errno));            close(fd);            goto OpenLib;        }        close(fd);        //判断是否为模拟器,对于真机,此处条件为false        if (strstr(buffer, "android.qemud=") != NULL)        {            int  tries = 5;#define  QEMUD_SOCKET_NAME    "qemud"            while (1) {                int  fd;                sleep(1);                fd = socket_local_client(QEMUD_SOCKET_NAME,                            ANDROID_SOCKET_NAMESPACE_RESERVED,                            SOCK_STREAM );                if (fd >= 0) {                    close(fd);                    snprintf( arg_device, sizeof(arg_device), "%s/%s",                                ANDROID_SOCKET_DIR, QEMUD_SOCKET_NAME );                    arg_overrides[1] = "-s";                    arg_overrides[2] = arg_device;                    done = 1;                    break;                }                LOGD("could not connect to %s socket: %s",QEMUD_SOCKET_NAME, strerror(errno));                if (--tries == 0)                    break;            }            if (!done) {                LOGE("could not connect to %s socket (giving up): %s",                    QEMUD_SOCKET_NAME, strerror(errno));                while(1)                    sleep(0x00ffffff);            }        }        /* otherwise, try to see if we passed a device name from the kernel */        if (!done) do { //true#define  KERNEL_OPTION  "android.ril="#define  DEV_PREFIX     "/dev/"            //判断/proc/cmdline中的内容是否包含"android.ril="            p = strstr( buffer, KERNEL_OPTION );            if (p == NULL)                break;            p += sizeof(KERNEL_OPTION)-1;            q  = strpbrk( p, " \t\n\r" );            if (q != NULL)                *q = 0;            snprintf( arg_device, sizeof(arg_device), DEV_PREFIX "%s", p );            arg_device[sizeof(arg_device)-1] = 0;            arg_overrides[1] = "-d";            arg_overrides[2] = arg_device;            done = 1;        } while (0);                if (done) { //false            argv = arg_overrides;            argc = 3;            i    = 1;            hasLibArgs = 1;            rilLibPath = REFERENCE_RIL_PATH;            LOGD("overriding with %s %s", arg_overrides[1], arg_overrides[2]);        }    }OpenLib:#endif##################################################################################                            动态库装载##################################################################################  switchUser();//设置Rild进程的组用户为radio  //加载厂商自定义的库    ①dlHandle = dlopen(rilLibPath, RTLD_NOW);    if (dlHandle == NULL) {        fprintf(stderr, "dlopen failed: %s\n", dlerror());        exit(-1);  }  //创建客户端事件监听线程  ②RIL_startEventLoop();  //通过dlsym定位到RIL_Init函数的地址,并且强制转换为RIL_RadioFunctions的函数指针    ③rilInit = (const RIL_RadioFunctions *(*)(const struct RIL_Env *, int, char **))dlsym(dlHandle, "RIL_Init");    if (rilInit == NULL) {        fprintf(stderr, "RIL_Init not defined or exported in %s\n", rilLibPath);        exit(-1);    }    if (hasLibArgs) { //false        rilArgv = argv + i - 1;        argc = argc -i + 1;    } else {        static char * newArgv[MAX_LIB_ARGS];        static char args[PROPERTY_VALUE_MAX];        rilArgv = newArgv;        property_get(LIB_ARGS_PROPERTY, args, "");//通过属性系统读取"rild.libargs"属性值        argc = make_argv(args, rilArgv);    }    // Make sure there's a reasonable argv[0]  rilArgv[0] = argv[0];  //调用RIL_Init函数来初始化rild,传入参数s_rilEnv,返回RIL_RadioFunctions地址  ④funcs = rilInit(&s_rilEnv, argc, rilArgv);  //注册客户端事件处理接口RIL_RadioFunctions,并创建socket监听事件    ⑤RIL_register(funcs);done:    while(1) {        // sleep(UINT32_MAX) seems to return immediately on bionic        sleep(0x00ffffff);    }}

在main函数中主要完成以下工作:

1.解析命令行参数,通过判断是否为模拟器采取不同的方式来读取libreference-ril.so库的存放路径;

2.使用dlopen手动装载libreference-ril.so库;

3.启动事件循环处理;

4.从libreference-ril.so库中取得RIL_Init函数地址,并使用该函数将libril.so库中的RIL_Env接口注册到libreference-ril.so库,同时将libreference-ril.so库中的RIL_RadioFunctions接口注册到到libril.so库中,建立起libril.so库与libreference-ril.so库通信桥梁;

启动事件循环处理eventLoop工作线程

建立多路I/O驱动机制的消息队列,用来接收上层发出的命令以及往Modem发送AT指令的工作,时整个RIL系统的核心部分。创建一个事件分发线程s_tid_dispatch,线程执行体为eventLoop。

hardware\ril\libril\Ril.cpp 

extern "C" void RIL_startEventLoop(void) {    int ret;    pthread_attr_t attr;    /* spin up eventLoop thread and wait for it to get started */    s_started = 0;    pthread_mutex_lock(&s_startupMutex);    pthread_attr_init (&attr);  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);  //创建一个工作线程eventLoop  ret = pthread_create(&s_tid_dispatch, &attr, eventLoop, NULL);  //确保函数返回前eventLoop线程启动运行    while (s_started == 0) {        pthread_cond_wait(&s_startupCond, &s_startupMutex);    }    pthread_mutex_unlock(&s_startupMutex);    if (ret < 0) {        LOGE("Failed to create dispatch thread errno:%d", errno);        return;    }}

eventLoop执行时序图:

static void * eventLoop(void *param) {    int ret;    int filedes[2];    ril_event_init(); //初始化请求队列    pthread_mutex_lock(&s_startupMutex);    s_started = 1; //eventLoop线程运行标志位    pthread_cond_broadcast(&s_startupCond);  pthread_mutex_unlock(&s_startupMutex);  //创建匿名管道    ret = pipe(filedes);    if (ret < 0) {        LOGE("Error in pipe() errno:%d", errno);        return NULL;  }  //s_fdWakeupRead为管道读端  s_fdWakeupRead = filedes[0];  //s_fdWakeupWrite为管道写端  s_fdWakeupWrite = filedes[1];  //设置管道读端为O_NONBLOCK非阻塞  fcntl(s_fdWakeupRead, F_SETFL, O_NONBLOCK);  //初始化s_wakeupfd_event结构体的内容,句柄为s_fdWakeupRead,回调函数为   processWakeupCallback    ril_event_set (&s_wakeupfd_event, s_fdWakeupRead, true,processWakeupCallback, NULL);    ①rilEventAddWakeup (&s_wakeupfd_event);    // Only returns on error    ②ril_event_loop();    LOGE ("error in event_loop_base errno:%d", errno);    return NULL;}

在rild中定义了event的概念,Rild支持两种类型的事件:

1. 定时事件:根据事件的执行时间来启动执行,通过ril_timer_add添加到time_list队列中

2. Wakeup事件:这些事件的句柄fd将加入的select IO多路复用的句柄池readFDs中,当对应的fd可读时将触发这些事件。对于处于listen端的socketfd可读表示有个客户端连接,此时需要调用accept接受连接。

事件定义如下:

struct ril_event {    struct ril_event *next;    struct ril_event *prev;    int fd;  //文件句柄    int index; //该事件在监控表中的索引     bool persist; //如果是保持的,则不从watch_list 中删除    struct timeval timeout; //任务执行时间    ril_event_cb func; //回调事件处理函数    void *param; //回调时参数};

Rild进程中的几个重要事件有

static struct ril_event s_commands_event;ril_event_set (&s_commands_event, s_fdCommand, 1,processCommandsCallback, p_rs)static struct ril_event s_wakeupfd_event;ril_event_set (&s_wakeupfd_event, s_fdWakeupRead, true,processWakeupCallback, NULL)static struct ril_event s_listen_event;ril_event_set (&s_listen_event, s_fdListen, false,listenCallback, NULL)static struct ril_event s_wake_timeout_event;ril_timer_add(&(p_info->event), &myRelativeTime);
static struct ril_event s_debug_event;ril_event_set (&s_debug_event, s_fdDebug, true,debugCallback, NULL)

在RILD中定义了三个事件队列,用于处理不同的事件:

/事件监控队列

static struct ril_event * watch_table[MAX_FD_EVENTS];

//定时事件队列

static struct ril_event timer_list;

//处理事件队列

static struct ril_event pending_list; //待处理事件队列,事件已经触发,需要所回调处理的事件

添加事件

1.添加Wakeup 事件

 

static void rilEventAddWakeup(struct ril_event *ev) {    ril_event_add(ev); //向监控表watch_table添加一个s_wakeupfd_event事件    triggerEvLoop(); //向管道s_fdWakeupWrite中写入之来触发事件循环}

void ril_event_add(struct ril_event * ev){    dlog("~~~~ +ril_event_add ~~~~");    MUTEX_ACQUIRE();    for (int i = 0; i < MAX_FD_EVENTS; i++) { //遍历监控表watch_table        if (watch_table[i] == NULL) { //从监控表中查找空闲的索引,然后把该任务加入到监控表中            watch_table[i] = ev; //向监控表中添加事件            ev->index = i; //事件的索引设置为在监控表中的索引            dlog("~~~~ added at %d ~~~~", i);            dump_event(ev);            FD_SET(ev->fd, &readFds); //将添加的事件对应的句柄添加到句柄池readFds中            if (ev->fd >= nfds) nfds = ev->fd+1; //修改句柄最大值            dlog("~~~~ nfds = %d ~~~~", nfds);            break;        }    }    MUTEX_RELEASE();    dlog("~~~~ -ril_event_add ~~~~");}

2.添加定时事件

void ril_timer_add(struct ril_event * ev, struct timeval * tv){    dlog("~~~~ +ril_timer_add ~~~~");    MUTEX_ACQUIRE();    struct ril_event * list;    if (tv != NULL) {        list = timer_list.next;        ev->fd = -1; // make sure fd is invalid        struct timeval now;        getNow(&now);        timeradd(&now, tv, &ev->timeout);        // keep list sorted        while (timercmp(&list->timeout, &ev->timeout, < ) && (list != &timer_list)) {            list = list->next;        }        // list now points to the first event older than ev        addToList(ev, list);    }    MUTEX_RELEASE();    dlog("~~~~ -ril_timer_add ~~~~");}


触发事件

static void triggerEvLoop() {    int ret;  if (!pthread_equal(pthread_self(), s_tid_dispatch)) { //如果当前线程ID不等于事件分发线程eventLoop的线程ID      do {            ret = write (s_fdWakeupWrite, " ", 1); //向管道写端写入值1来触发eventLoop事件循环         } while (ret < 0 && errno == EINTR);    }}


处理事件

void ril_event_loop(){    int n;    fd_set rfds;    struct timeval tv;    struct timeval * ptv;    for (;;) {        memcpy(&rfds, &readFds, sizeof(fd_set));        if (-1 == calcNextTimeout(&tv)) {            dlog("~~~~ no timers; blocking indefinitely ~~~~");            ptv = NULL;        } else {            dlog("~~~~ blocking for %ds + %dus ~~~~", (int)tv.tv_sec, (int)tv.tv_usec);            ptv = &tv;        }        //使用select 函数等待在FDS 上,只要FDS 中记录的设备有数据到来,select 就会设置相应的标志位并返回。readFDS 记录了所有的事件相关设备句柄。readFDS 中句柄是在在AddEvent 加入的。        printReadies(&rfds);        n = select(nfds, &rfds, NULL, NULL, ptv);         printReadies(&rfds);        dlog("~~~~ %d events fired ~~~~", n);        if (n < 0) {            if (errno == EINTR) continue;            LOGE("ril_event: select error (%d)", errno);            return;        }        processTimeouts(); //从timer_list中查询执行时间已到的事件,并添加到pending_list中        processReadReadies(&rfds, n); //从watch_table中查询数据可读的事件,并添加到pending_list中去处理,如果该事件不是持久事件,则同时从watch_table中删除        //遍历pending_list,调用事件处理回调函数处理所有事件        firePending();    }}

在eventLoop工作线程中,循环处理到来的事件及定时结束事件,整个处理流程如下图所示:

首先通过Linux中的select多路I/O复用对句柄池中的所有句柄进行监控,当有事件到来时select返回,否则阻塞。当select返回时,表示有事件的到来,通过调用processTimeouts函数来处理超时事件,处理方式是遍历time_list链表以查询超时事件,并将超时事件移入到pending_list链表中,接着调用processReadReadies函数来处理触发的事件,处理方式为遍历watch_table列表以查询触发的事件,并将触发的事件移入到pending_list链表中,如果该事件不是持久事件,还需要从watch_table列表中移除,当查询完两种待处理的事件并放入到pending_list链表中后,调用firePending函数对待处理的事件进行集中处理,处理方式为遍历链表,调用每一个事件的回调函数。

 1.超时事件查询
static void processTimeouts(){    dlog("~~~~ +processTimeouts ~~~~");    MUTEX_ACQUIRE();    struct timeval now;    struct ril_event * tev = timer_list.next;    struct ril_event * next;    getNow(&now); //获取当前时间  dlog("~~~~ Looking for timers <= %ds + %dus ~~~~", (int)now.tv_sec, (int)now.tv_usec);  //如果当前时间大于事件的超时时间,则将该事件从timer_list中移除,添加到pending_list    while ((tev != &timer_list) && (timercmp(&now, &tev->timeout, >))) {        dlog("~~~~ firing timer ~~~~");        next = tev->next;        removeFromList(tev); //从timer_list中移除事件        addToList(tev, &pending_list); //将事件添加到pending_list        tev = next;    }    MUTEX_RELEASE();    dlog("~~~~ -processTimeouts ~~~~");}
2.可读事件查询
static void processReadReadies(fd_set * rfds, int n){    dlog("~~~~ +processReadReadies (%d) ~~~~", n);  MUTEX_ACQUIRE();   //遍历watch_table数组,根据select返回的句柄n查找对应的事件    for (int i = 0; (i < MAX_FD_EVENTS) && (n > 0); i++) {        struct ril_event * rev = watch_table[i]; //得到相应的事件        if (rev != NULL && FD_ISSET(rev->fd, rfds)) {            addToList(rev, &pending_list); //将该事件添加到pending_list中            if (rev->persist == false) { //如果该事件不是持久事件还要从watch_table中移除                removeWatch(rev, i);            }            n--;        }    }    MUTEX_RELEASE();    dlog("~~~~ -processReadReadies (%d) ~~~~", n);}
3.事件处理
static void firePending(){    dlog("~~~~ +firePending ~~~~");    struct ril_event * ev = pending_list.next;    while (ev != &pending_list) { //遍历pending_list链表,处理链表中的所有事件        struct ril_event * next = ev->next;        removeFromList(ev); //将处理完的事件从pending_list中移除        ev->func(ev->fd, 0, ev->param); //调用事件处理的回调函数        ev = next;    }    dlog("~~~~ -firePending ~~~~");}

RIL_Env定义

hardware\ril\include\telephony\ril.h

struct RIL_Env {    //动态库完成请求后通知处理结果的接口  void (*OnRequestComplete)(RIL_Token t, RIL_Errno e,void *response, size_t responselen);    //动态库unSolicited Response通知接口  void (*OnUnsolicitedResponse)(int unsolResponse, const void *data,size_t datalen);    //向Rild提交一个超时任务的接口    void (*RequestTimedCallback) (RIL_TimedCallback callback,void *param, const struct timeval *relativeTime);};

hardware\ril\rild\rild.c

s_rilEnv变量定义:

static struct RIL_Env s_rilEnv = {    RIL_onRequestComplete,    RIL_onUnsolicitedResponse,    RIL_requestTimedCallback};

在hardware\ril\libril\ril.cpp中实现了RIL_Env的各个接口函数

1.RIL_onRequestComplete

extern "C" void RIL_onRequestComplete(RIL_Token t, RIL_Errno e, void *response, size_t responselen) {    RequestInfo *pRI;    int ret;    size_t errorOffset;    pRI = (RequestInfo *)t;    if (!checkAndDequeueRequestInfo(pRI)) {        LOGE ("RIL_onRequestComplete: invalid RIL_Token");        return;    }    if (pRI->local > 0) {        // Locally issued command...void only!        // response does not go back up the command socket        LOGD("C[locl]< %s", requestToString(pRI->pCI->requestNumber));        goto done;    }    appendPrintBuf("[%04d]< %s",pRI->token, requestToString(pRI->pCI->requestNumber));    if (pRI->cancelled == 0) {        Parcel p;        p.writeInt32 (RESPONSE_SOLICITED);        p.writeInt32 (pRI->token);        errorOffset = p.dataPosition();        p.writeInt32 (e);        if (response != NULL) {            // there is a response payload, no matter success or not.            ret = pRI->pCI->responseFunction(p, response, responselen);            /* if an error occurred, rewind and mark it */            if (ret != 0) {                p.setDataPosition(errorOffset);                p.writeInt32 (ret);            }        }        if (e != RIL_E_SUCCESS) {            appendPrintBuf("%s fails by %s", printBuf, failCauseToString(e));        }        if (s_fdCommand < 0) {            LOGD ("RIL onRequestComplete: Command channel closed");        }        sendResponse(p);    }done:    free(pRI);}

通过调用responseXXX将底层响应传给客户进程

2.RIL_onUnsolicitedResponse

extern "C" void RIL_onUnsolicitedResponse(int unsolResponse, void *data,                                size_t datalen){    int unsolResponseIndex;    int ret;    int64_t timeReceived = 0;    bool shouldScheduleTimeout = false;    if (s_registerCalled == 0) {        // Ignore RIL_onUnsolicitedResponse before RIL_register        LOGW("RIL_onUnsolicitedResponse called before RIL_register");        return;    }    unsolResponseIndex = unsolResponse - RIL_UNSOL_RESPONSE_BASE;    if ((unsolResponseIndex < 0)        || (unsolResponseIndex >= (int32_t)NUM_ELEMS(s_unsolResponses))) {        LOGE("unsupported unsolicited response code %d", unsolResponse);        return;    }    // Grab a wake lock if needed for this reponse,    // as we exit we'll either release it immediately    // or set a timer to release it later.    switch (s_unsolResponses[unsolResponseIndex].wakeType) {        case WAKE_PARTIAL:            grabPartialWakeLock();            shouldScheduleTimeout = true;        break;        case DONT_WAKE:        default:            // No wake lock is grabed so don't set timeout            shouldScheduleTimeout = false;            break;    }    // Mark the time this was received, doing this    // after grabing the wakelock incase getting    // the elapsedRealTime might cause us to goto    // sleep.    if (unsolResponse == RIL_UNSOL_NITZ_TIME_RECEIVED) {        timeReceived = elapsedRealtime();    }    appendPrintBuf("[UNSL]< %s", requestToString(unsolResponse));    Parcel p;    p.writeInt32 (RESPONSE_UNSOLICITED);    p.writeInt32 (unsolResponse);    ret = s_unsolResponses[unsolResponseIndex].responseFunction(p, data, datalen);    if (ret != 0) {        // Problem with the response. Don't continue;        goto error_exit;    }    // some things get more payload    switch(unsolResponse) {        case RIL_UNSOL_RESPONSE_RADIO_STATE_CHANGED:            p.writeInt32(s_callbacks.onStateRequest());            appendPrintBuf("%s {%s}", printBuf,                radioStateToString(s_callbacks.onStateRequest()));        break;        case RIL_UNSOL_NITZ_TIME_RECEIVED:            // Store the time that this was received so the            // handler of this message can account for            // the time it takes to arrive and process. In            // particular the system has been known to sleep            // before this message can be processed.            p.writeInt64(timeReceived);        break;    }    ret = sendResponse(p);    if (ret != 0 && unsolResponse == RIL_UNSOL_NITZ_TIME_RECEIVED) {        // Unfortunately, NITZ time is not poll/update like everything        // else in the system. So, if the upstream client isn't connected,        // keep a copy of the last NITZ response (with receive time noted        // above) around so we can deliver it when it is connected        if (s_lastNITZTimeData != NULL) {            free (s_lastNITZTimeData);            s_lastNITZTimeData = NULL;        }        s_lastNITZTimeData = malloc(p.dataSize());        s_lastNITZTimeDataSize = p.dataSize();        memcpy(s_lastNITZTimeData, p.data(), p.dataSize());    }    // For now, we automatically go back to sleep after TIMEVAL_WAKE_TIMEOUT    // FIXME The java code should handshake here to release wake lock    if (shouldScheduleTimeout) {        // Cancel the previous request        if (s_last_wake_timeout_info != NULL) {            s_last_wake_timeout_info->userParam = (void *)1;        }        s_last_wake_timeout_info= internalRequestTimedCallback(wakeTimeoutCallback, NULL,                                            &TIMEVAL_WAKE_TIMEOUT);    }    return;error_exit:    if (shouldScheduleTimeout) {        releaseWakeLock();    }}

这个函数处理modem从网络端接收到的各种事件,如网络信号变化,拨入的电话,收到短信等。然后传给客户进程。

3.RIL_requestTimedCallback

extern "C" void RIL_requestTimedCallback (RIL_TimedCallback callback, void *param,                                const struct timeval *relativeTime) {    internalRequestTimedCallback (callback, param, relativeTime);}


static UserCallbackInfo *internalRequestTimedCallback (RIL_TimedCallback callback, void *param,                                const struct timeval *relativeTime){    struct timeval myRelativeTime;    UserCallbackInfo *p_info;    p_info = (UserCallbackInfo *) malloc (sizeof(UserCallbackInfo));    p_info->p_callback = callback;    p_info->userParam = param;    if (relativeTime == NULL) {        /* treat null parameter as a 0 relative time */        memset (&myRelativeTime, 0, sizeof(myRelativeTime));    } else {        /* FIXME I think event_add's tv param is really const anyway */        memcpy (&myRelativeTime, relativeTime, sizeof(myRelativeTime));    }    ril_event_set(&(p_info->event), -1, false, userTimerCallback, p_info);    ril_timer_add(&(p_info->event), &myRelativeTime);    triggerEvLoop();    return p_info;}

RIL_RadioFunctions定义

客户端向Rild发送请求的接口,由各手机厂商实现。

hardware\ril\include\telephony\Ril.h 

typedef struct {    int version; //Rild版本    RIL_RequestFunc onRequest; //AP请求接口    RIL_RadioStateRequest onStateRequest;//BP状态查询    RIL_Supports supports;    RIL_Cancel onCancel;    RIL_GetVersion getVersion;//动态库版本} RIL_RadioFunctions;

变量定义:

static const RIL_RadioFunctions s_callbacks = {    RIL_VERSION,    onRequest,    currentState,    onSupports,    onCancel,    getVersion};

在hardware\ril\reference-ril\reference-ril.c中实现了RIL_RadioFunctions的各个接口函数

1.onRequest

static void onRequest (int request, void *data, size_t datalen, RIL_Token t){    ATResponse *p_response;    int err;    LOGD("onRequest: %s", requestToString(request));    /* Ignore all requests except RIL_REQUEST_GET_SIM_STATUS     * when RADIO_STATE_UNAVAILABLE.     */    if (sState == RADIO_STATE_UNAVAILABLE        && request != RIL_REQUEST_GET_SIM_STATUS    ) {        RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0);        return;    }    /* Ignore all non-power requests when RADIO_STATE_OFF     * (except RIL_REQUEST_GET_SIM_STATUS)     */    if (sState == RADIO_STATE_OFF&& !(request == RIL_REQUEST_RADIO_POWER            || request == RIL_REQUEST_GET_SIM_STATUS)    ) {        RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0);        return;    }    switch (request) {        case RIL_REQUEST_GET_SIM_STATUS: {            RIL_CardStatus *p_card_status;            char *p_buffer;            int buffer_size;            int result = getCardStatus(&p_card_status);            if (result == RIL_E_SUCCESS) {                p_buffer = (char *)p_card_status;                buffer_size = sizeof(*p_card_status);            } else {                p_buffer = NULL;                buffer_size = 0;            }            RIL_onRequestComplete(t, result, p_buffer, buffer_size);            freeCardStatus(p_card_status);            break;        }        case RIL_REQUEST_GET_CURRENT_CALLS:            requestGetCurrentCalls(data, datalen, t);            break;        case RIL_REQUEST_DIAL:            requestDial(data, datalen, t);            break;        case RIL_REQUEST_HANGUP:            requestHangup(data, datalen, t);            break;        case RIL_REQUEST_HANGUP_WAITING_OR_BACKGROUND:            // 3GPP 22.030 6.5.5            // "Releases all held calls or sets User Determined User Busy            //  (UDUB) for a waiting call."            at_send_command("AT+CHLD=0", NULL);            /* success or failure is ignored by the upper layer here.               it will call GET_CURRENT_CALLS and determine success that way */            RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);            break;        case RIL_REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND:            // 3GPP 22.030 6.5.5            // "Releases all active calls (if any exist) and accepts            //  the other (held or waiting) call."            at_send_command("AT+CHLD=1", NULL);            /* success or failure is ignored by the upper layer here.               it will call GET_CURRENT_CALLS and determine success that way */            RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);            break;        case RIL_REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE:            // 3GPP 22.030 6.5.5            // "Places all active calls (if any exist) on hold and accepts            //  the other (held or waiting) call."            at_send_command("AT+CHLD=2", NULL);#ifdef WORKAROUND_ERRONEOUS_ANSWER            s_expectAnswer = 1;#endif /* WORKAROUND_ERRONEOUS_ANSWER */            /* success or failure is ignored by the upper layer here.               it will call GET_CURRENT_CALLS and determine success that way */            RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);            break;        case RIL_REQUEST_ANSWER:            at_send_command("ATA", NULL);#ifdef WORKAROUND_ERRONEOUS_ANSWER            s_expectAnswer = 1;#endif /* WORKAROUND_ERRONEOUS_ANSWER */            /* success or failure is ignored by the upper layer here.               it will call GET_CURRENT_CALLS and determine success that way */            RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);            break;        case RIL_REQUEST_CONFERENCE:            // 3GPP 22.030 6.5.5            // "Adds a held call to the conversation"            at_send_command("AT+CHLD=3", NULL);            /* success or failure is ignored by the upper layer here.               it will call GET_CURRENT_CALLS and determine success that way */            RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);            break;        case RIL_REQUEST_UDUB:            /* user determined user busy */            /* sometimes used: ATH */            at_send_command("ATH", NULL);            /* success or failure is ignored by the upper layer here.               it will call GET_CURRENT_CALLS and determine success that way */            RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);            break;        case RIL_REQUEST_SEPARATE_CONNECTION:            {                char  cmd[12];                int   party = ((int*)data)[0];                // Make sure that party is in a valid range.                // (Note: The Telephony middle layer imposes a range of 1 to 7.                // It's sufficient for us to just make sure it's single digit.)                if (party > 0 && party < 10) {                    sprintf(cmd, "AT+CHLD=2%d", party);                    at_send_command(cmd, NULL);                    RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);                } else {                    RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);                }            }            break;        case RIL_REQUEST_SIGNAL_STRENGTH:            requestSignalStrength(data, datalen, t);            break;        case RIL_REQUEST_REGISTRATION_STATE:        case RIL_REQUEST_GPRS_REGISTRATION_STATE:            requestRegistrationState(request, data, datalen, t);            break;        case RIL_REQUEST_OPERATOR:            requestOperator(data, datalen, t);            break;        case RIL_REQUEST_RADIO_POWER:            requestRadioPower(data, datalen, t);            break;        case RIL_REQUEST_DTMF: {            char c = ((char *)data)[0];            char *cmd;            asprintf(&cmd, "AT+VTS=%c", (int)c);            at_send_command(cmd, NULL);            free(cmd);            RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);            break;        }        case RIL_REQUEST_SEND_SMS:            requestSendSMS(data, datalen, t);            break;        case RIL_REQUEST_SETUP_DATA_CALL:            requestSetupDataCall(data, datalen, t);            break;        case RIL_REQUEST_SMS_ACKNOWLEDGE:            requestSMSAcknowledge(data, datalen, t);            break;        case RIL_REQUEST_GET_IMSI:            p_response = NULL;            err = at_send_command_numeric("AT+CIMI", &p_response);            if (err < 0 || p_response->success == 0) {                RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);            } else {                RIL_onRequestComplete(t, RIL_E_SUCCESS,                    p_response->p_intermediates->line, sizeof(char *));            }            at_response_free(p_response);            break;        case RIL_REQUEST_GET_IMEI:            p_response = NULL;            err = at_send_command_numeric("AT+CGSN", &p_response);            if (err < 0 || p_response->success == 0) {                RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);            } else {                RIL_onRequestComplete(t, RIL_E_SUCCESS,                    p_response->p_intermediates->line, sizeof(char *));            }            at_response_free(p_response);            break;        case RIL_REQUEST_SIM_IO:            requestSIM_IO(data,datalen,t);            break;        case RIL_REQUEST_SEND_USSD:            requestSendUSSD(data, datalen, t);            break;        case RIL_REQUEST_CANCEL_USSD:            p_response = NULL;            err = at_send_command_numeric("AT+CUSD=2", &p_response);            if (err < 0 || p_response->success == 0) {                RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);            } else {                RIL_onRequestComplete(t, RIL_E_SUCCESS,                    p_response->p_intermediates->line, sizeof(char *));            }            at_response_free(p_response);            break;        case RIL_REQUEST_SET_NETWORK_SELECTION_AUTOMATIC:            at_send_command("AT+COPS=0", NULL);            break;        case RIL_REQUEST_DATA_CALL_LIST:            requestDataCallList(data, datalen, t);            break;        case RIL_REQUEST_QUERY_NETWORK_SELECTION_MODE:            requestQueryNetworkSelectionMode(data, datalen, t);            break;        case RIL_REQUEST_OEM_HOOK_RAW:            // echo back data            RIL_onRequestComplete(t, RIL_E_SUCCESS, data, datalen);            break;        case RIL_REQUEST_OEM_HOOK_STRINGS: {            int i;            const char ** cur;            LOGD("got OEM_HOOK_STRINGS: 0x%8p %lu", data, (long)datalen);            for (i = (datalen / sizeof (char *)), cur = (const char **)data ;                    i > 0 ; cur++, i --) {                LOGD("> '%s'", *cur);            }            // echo back strings            RIL_onRequestComplete(t, RIL_E_SUCCESS, data, datalen);            break;        }        case RIL_REQUEST_WRITE_SMS_TO_SIM:            requestWriteSmsToSim(data, datalen, t);            break;        case RIL_REQUEST_DELETE_SMS_ON_SIM: {            char * cmd;            p_response = NULL;            asprintf(&cmd, "AT+CMGD=%d", ((int *)data)[0]);            err = at_send_command(cmd, &p_response);            free(cmd);            if (err < 0 || p_response->success == 0) {                RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);            } else {                RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);            }            at_response_free(p_response);            break;        }        case RIL_REQUEST_ENTER_SIM_PIN:        case RIL_REQUEST_ENTER_SIM_PUK:        case RIL_REQUEST_ENTER_SIM_PIN2:        case RIL_REQUEST_ENTER_SIM_PUK2:        case RIL_REQUEST_CHANGE_SIM_PIN:        case RIL_REQUEST_CHANGE_SIM_PIN2:            requestEnterSimPin(data, datalen, t);            break;        case RIL_REQUEST_GSM_SMS_BROADCAST_ACTIVATION:            requestSmsBroadcastActivation(0,data, datalen, t);            break;        case RIL_REQUEST_GSM_SET_BROADCAST_SMS_CONFIG:             LOGD("onRequest RIL_REQUEST_GSM_SET_BROADCAST_SMS_CONFIG");            requestSetSmsBroadcastConfig(0,data, datalen, t);            break;        case RIL_REQUEST_GSM_GET_BROADCAST_SMS_CONFIG:            requestGetSmsBroadcastConfig(0,data, datalen, t);            break;        default:            RIL_onRequestComplete(t, RIL_E_REQUEST_NOT_SUPPORTED, NULL, 0);            break;    }}

对每一个RIL_REQUEST_XXX请求转化成相应的ATcommand,发送给modem,然后睡眠等待,当收到ATcommand的最终响应后,线程被唤醒,将响应传给客户端进程。

2.currentState

static RIL_RadioState currentState(){    return sState;}

3.onSupports

static int onSupports (int requestCode){    //@@@ todo    return 1;}

4.onCancel

static void onCancel (RIL_Token t){    //@@@todo}

5.getVersion

static const char * getVersion(void){    return "android reference-ril 1.0";}

注册RIL_Env接口


由于各手机厂商的AT指令差异,因此与modem交互层需要各手机厂商实现,以动态库的形式提供。作为介于modem与上层的中间层,即要与底层交互也要与上层通信,因此就需要定义一个接口来衔接RILD与动态库,RIL_Env和RIL_RadioFunctions接口就是libril.so与librefrence.so通信的桥梁。Rild架构中用于隔离通用代码和厂商代码的接口,RIL_Env由通用代码实现,而RIL_RadioFunctions则是由厂商代码实现。


RIL_Init的主要任务:

1. 向librefrence.so注册libril.so提供的接口RIL_Env;

2. 创建一个mainLoop工作线程,用于初始化AT模块,并监控AT模块的状态,一旦AT被关闭,则重新打开并初始化AT

3. AT被打开后,mainLoop工作线程将向Rild提交一个定时事件,并触发eventLoop来完成对modem的初始化;

4. 创建一个readLoop工作线程,用于从AT串口中读取数据;

5.返回librefrence.so提供的接口RIL_RadioFunctions;

hardware\ril\reference-ril\reference-ril.c

const RIL_RadioFunctions *RIL_Init(const struct RIL_Env *env, int argc, char **argv){    int ret;    int fd = -1;    int opt;    pthread_attr_t attr;  s_rilenv = env; //将ril.cpp中定义的RIL_Env注册到reference-ril.c中的s_rilenv    while ( -1 != (opt = getopt(argc, argv, "p:d:s:"))) {        switch (opt) {            case 'p':                s_port = atoi(optarg);                if (s_port == 0) {                    usage(argv[0]);                    return NULL;                }                LOGI("Opening loopback port %d\n", s_port);            break;            case 'd':                s_device_path = optarg;                LOGI("Opening tty device %s\n", s_device_path);            break;            case 's':                s_device_path   = optarg;                s_device_socket = 1;                LOGI("Opening socket %s\n", s_device_path);            break;            default:转自:

http://www.xuebuyuan.com/1487968.html

0 0