23种设计模式解析

来源:互联网 发布:管家婆软件创业板 编辑:程序博客网 时间:2024/05/29 08:08


1、工厂方法模式(Factory Method)

工厂方法模式分为三种:
1、普通工厂模式,就是建立一个工厂类,对实现了同一接口的一些类进行实例的创建。首先看下关系图:

举例如下:(我们举一个发送邮件和短信的例子)首先,创建二者的共同接口:public interface Sender {      public void Send();  }  其次,创建实现类:public class MailSender implements Sender {      @Override      public void Send() {          System.out.println("this is mailsender!");      }  }  public class SmsSender implements Sender {        @Override      public void Send() {          System.out.println("this is sms sender!");      }  }  最后,建工厂类:public class SendFactory {        public Sender produce(String type) {          if ("mail".equals(type)) {              return new MailSender();          } else if ("sms".equals(type)) {              return new SmsSender();          } else {              System.out.println("请输入正确的类型!");              return null;          }      }  } 我们来测试下:public class FactoryTest {        public static void main(String[] args) {          SendFactory factory = new SendFactory();          Sender sender = factory.produce("sms");          sender.Send();      }  }输出:this is sms sender!1) 工厂模式适合凡是出现了大量的产品需要创建,并且具有共同的接口时,可以通过工厂方法模式进行创建。
2) 在以上的三种模式中,第一种如果传入的字符串有误,不能正确创建对象,第三种相对于第二种,不需要实例化工厂类,所以,大多数情况下,我们会选用第三种——静态工厂方法模式。

2、抽象工厂模式(Abstract Factory)

1) 工厂方法模式有一个问题就是,类的创建依赖工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则,所以,从设计角度考虑,有一定的问题,如何解决?就用到抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。因为抽象工厂不太好理解,我们先看看图,然后就和代码,就比较容易理解。

请看例子:public interface Sender {      public void Send();  }两个实现类:public class MailSender implements Sender {      @Override      public void Send() {          System.out.println("this is mailsender!");      }  }public class SmsSender implements Sender {      @Override      public void Send() {          System.out.println("this is sms sender!");      }  } 两个工厂类:public class SendMailFactory implements Provider {           @Override      public Sender produce(){          return new MailSender();      }  }  public class SendSmsFactory implements Provider{      @Override      public Sender produce() {          return new SmsSender();      }  }  在提供一个接口:public interface Provider {      public Sender produce();  } 测试类:public class Test {      public static void main(String[] args) {          Provider provider = new SendMailFactory();          Sender sender = provider.produce();          sender.Send();      }  }  

3、单例模式(Singleton)

在Java应用中,单例对象能保证在一个JVM中,该对象只有一个实例存在。这样的模式有几个好处:
1、某些类创建比较频繁,对于一些大型的对象,这是一笔很大的系统开销。
2、省去了new操作符,降低了系统内存的使用频率,减轻GC压力。
3、有些类如交易所的核心交易引擎,控制着交易流程,如果该类可以创建多个的话,系统完全乱了。(比如一个军队出现了多个司令员同时指挥,肯定会乱成一团),所以只有使用单例模式,才能保证核心交易服务器独立控制整个流程。

public class Singleton {        /* 持有私有静态实例,防止被引用,此处赋值为null,目的是实现延迟加载 */      private static Singleton instance = null;        /* 私有构造方法,防止被实例化 */      private Singleton() {      }        /* 静态工程方法,创建实例 */      public static Singleton getInstance() {          if (instance == null) {              instance = new Singleton();          }          return instance;      }        /* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */      public Object readResolve() {          return instance;      }  }  

4、建造者模式(Builder)

工厂类模式提供的是创建单个类的模式,而建造者模式则是将各种产品集中起来进行管理,用来创建复合对象,所谓复合对象就是指某个类具有不同的属性,其实建造者模式就是前面抽象工厂模式和最后的Test结合起来得到的。

还和前面一样,一个Sender接口,两个实现类MailSender和SmsSender。最后,建造者类如下:public class Builder {            private List<Sender> list = new ArrayList<Sender>();           public void produceMailSender(int count){          for(int i=0; i<count; i++){              list.add(new MailSender());          }      }            public void produceSmsSender(int count){          for(int i=0; i<count; i++){              list.add(new SmsSender());          }      }  } 测试类:public class Test {        public static void main(String[] args) {          Builder builder = new Builder();          builder.produceMailSender(10);      }  }  

5、原型模式(Prototype)

原型模式虽然是创建型的模式,但是与工程模式没有关系,从名字即可看出,该模式的思想就是将一个对象作为原型,对其进行复制、克隆,产生一个和原对象类似的新对象。本小结会通过对象的复制,进行讲解。在Java中,复制对象是通过clone()实现的,先创建一个原型类:

public class Prototype implements Cloneable {        public Object clone() throws CloneNotSupportedException {          Prototype proto = (Prototype) super.clone();          return proto;      }  } 很简单,一个原型类,只需要实现Cloneable接口,覆写clone方法,此处clone方法可以改成任意的名称,因为Cloneable接口是个空接口,你可以任意定义实现类的方法名,如cloneA或者cloneB,因为此处的重点是super.clone()这句话,super.clone()调用的是Object的clone()方法,而在Object类中,clone()是native的,具体怎么实现,我会在另一篇文章中,关于解读Java中本地方法的调用,此处不再深究。在这儿,我将结合对象的浅复制和深复制来说一下,首先需要了解对象深、浅复制的概念:浅复制:将一个对象复制后,基本数据类型的变量都会重新创建,而引用类型,指向的还是原对象所指向的。深复制:将一个对象复制后,不论是基本数据类型还有引用类型,都是重新创建的。简单来说,就是深复制进行了完全彻底的复制,而浅复制不彻底。public class Prototype implements Cloneable, Serializable {       private static final long serialVersionUID = 1L;      private String string;       private SerializableObject obj;      /* 浅复制 */      public Object clone() throws CloneNotSupportedException {          Prototype proto = (Prototype) super.clone();          return proto;      }        /* 深复制 */      public Object deepClone() throws IOException, ClassNotFoundException {            /* 写入当前对象的二进制流 */          ByteArrayOutputStream bos = new ByteArrayOutputStream();          ObjectOutputStream oos = new ObjectOutputStream(bos);          oos.writeObject(this);            /* 读出二进制流产生的新对象 */          ByteArrayInputStream bis = new ByteArrayInputStream(bos.toByteArray());          ObjectInputStream ois = new ObjectInputStream(bis);          return ois.readObject();      }  public String getString() {          return string;      }       public void setString(String string) {          this.string = string;      }        public SerializableObject getObj() {          return obj;      }        public void setObj(SerializableObject obj) {          this.obj = obj;      }   }    class SerializableObject implements Serializable {      private static final long serialVersionUID = 1L;  }  

6、适配器模式(Adapter)

适配器模式将某个类的接口转换成客户端期望的另一个接口表示,目的是消除由于接口不匹配所造成的类的兼容性问题。主要分为三类:类的适配器模式、对象的适配器模式、接口的适配器模式。首先,我们来看看类的适配器模式,先看类图:


核心思想就是:有一个Source类,拥有一个方法,待适配,目标接口时Targetable,通过Adapter类,将Source的功能扩展到Targetable里,看代码:

public class Source {        public void method1() {          System.out.println("this is original method!");      }  } public interface Targetable {        /* 与原类中的方法相同 */      public void method1();        /* 新类的方法 */      public void method2();  } public class Adapter extends Source implements Targetable {       @Override      public void method2() {          System.out.println("this is the targetable method!");      }  }Adapter类继承Source类,实现Targetable接口,下面是测试类:public class AdapterTest {       public static void main(String[] args) {          Targetable target = new Adapter();          target.method1();          target.method2();      }  } 输出:this is original method!this is the targetable method!这样Targetable接口的实现类就具有了Source类的功能。

总结一下三种适配器模式的应用场景:
类的适配器模式:当希望将一个类转换成满足另一个新接口的类时,可以使用类的适配器模式,创建一个新类,继承原有的类,实现新的接口即可。
对象的适配器模式:当希望将一个对象转换成满足另一个新接口的对象时,可以创建一个Wrapper类,持有原类的一个实例,在Wrapper类的方法中,调用实例的方法就行。
接口的适配器模式:当不希望实现一个接口中所有的方法时,可以创建一个抽象类Wrapper,实现所有方法,我们写别的类的时候,继承抽象类即可。


7、装饰模式(Decorator)

装饰模式就是给一个对象增加一些新的功能,而且是动态的,要求装饰对象和被装饰对象实现同一个接口,装饰对象持有被装饰对象的实例,关系图如下:
Source类是被装饰类,Decorator类是一个装饰类,可以为Source类动态的添加一些功能,代码如下:

public interface Sourceable {      public void method();  } public class Source implements Sourceable {        @Override      public void method() {          System.out.println("the original method!");      }  }public class Decorator implements Sourceable {        private Sourceable source;           public Decorator(Sourceable source){          super();          this.source = source;      }      @Override      public void method() {          System.out.println("before decorator!");          source.method();          System.out.println("after decorator!");      }  }  测试类:public class DecoratorTest {        public static void main(String[] args) {          Sourceable source = new Source();          Sourceable obj = new Decorator(source);          obj.method();      }  }  输出:before decorator!the original method!after decorator!

装饰器模式的应用场景:
1、需要扩展一个类的功能。
2、动态的为一个对象增加功能,而且还能动态撤销。(继承不能做到这一点,继承的功能是静态的,不能动态增删。)
缺点:产生过多相似的对象,不易排错!

8、代理模式(Proxy)

其实每个模式名称就表明了该模式的作用,代理模式就是多一个代理类出来,替原对象进行一些操作,比如我们在租房子的时候回去找中介,为什么呢?因为你对该地区房屋的信息掌握的不够全面,希望找一个更熟悉的人去帮你做,此处的代理就是这个意思。再如我们有的时候打官司,我们需要请律师,因为律师在法律方面有专长,可以替我们进行操作,表达我们的想法。public interface Sourceable {      public void method();  }public class Source implements Sourceable {        @Override      public void method() {          System.out.println("the original method!");      }  } 根据上文的阐述,代理模式就比较容易的理解了,我们看下代码:public class Source implements Sourceable {      @Override      public void method() {          System.out.println("the original method!");      }  }  public class Proxy implements Sourceable {      private Source source;      public Proxy(){          super();          this.source = new Source();      }      @Override      public void method() {          before();          source.method();          atfer();      }      private void atfer() {          System.out.println("after proxy!");      }      private void before() {          System.out.println("before proxy!");      }  }  测试类:public class ProxyTest {        public static void main(String[] args) {          Sourceable source = new Proxy();          source.method();      }    } 输出:before proxy!the original method!after proxy!

代理模式的应用场景:
如果已有的方法在使用的时候需要对原有的方法进行改进,此时有两种办法:
1、修改原有的方法来适应。这样违反了“对扩展开放,对修改关闭”的原则。
2、就是采用一个代理类调用原有的方法,且对产生的结果进行控制。这种方法就是代理模式。
使用代理模式,可以将功能划分的更加清晰,有助于后期维护!

9、外观模式(Facade)

外观模式是为了解决类与类之家的依赖关系的,像spring一样,可以将类和类之间的关系配置到配置文件中,而外观模式就是将他们的关系放在一个Facade类中,降低了类类之间的耦合度,该模式中没有涉及到接口


10、桥接模式(Bridge)

桥接模式就是把事物和其具体实现分开,使他们可以各自独立的变化。桥接的用意是:将抽象化与实现化解耦,使得二者可以独立变化,像我们常用的JDBC桥DriverManager一样,JDBC进行连接数据库的时候,在各个数据库之间进行切换,基本不需要动太多的代码,甚至丝毫不用动,原因就是JDBC提供统一接口,每个数据库提供各自的实现,用一个叫做数据库驱动的程序来桥接就行了。


11、组合模式(Composite)

组合模式有时又叫部分-整体模式在处理类似树形结构的问题时比较方便
使用场景:将多个对象组合在一起进行操作,常用于表示树形结构中,例如二叉树,数等。

public class TreeNode {            private String name;      private TreeNode parent;      private Vector<TreeNode> children = new Vector<TreeNode>();                public TreeNode(String name){          this.name = name;      }       public String getName() {          return name;      }        public void setName(String name) {          this.name = name;      }       public TreeNode getParent() {          return parent;      }        public void setParent(TreeNode parent) {          this.parent = parent;      }            //添加孩子节点      public void add(TreeNode node){          children.add(node);      }            //删除孩子节点      public void remove(TreeNode node){          children.remove(node);      }            //取得孩子节点      public Enumeration<TreeNode> getChildren(){          return children.elements();      }  }  public class Tree {        TreeNode root = null;           public Tree(String name) {          root = new TreeNode(name);      }        public static void main(String[] args) {          Tree tree = new Tree("A");          TreeNode nodeB = new TreeNode("B");          TreeNode nodeC = new TreeNode("C");                    nodeB.add(nodeC);          tree.root.add(nodeB);          System.out.println("build the tree finished!");      }  }  

12、享元模式(Flyweight)

享元模式的主要目的是实现对象的共享,即共享池,当系统中对象多的时候可以减少内存的开销,通常与工厂模式一起使用。

13、策略模式(strategy)

策略模式定义了一系列算法,并将每个算法封装起来,使他们可以相互替换,且算法的变化不会影响到使用算法的客户。需要设计一个接口,为一系列实现类提供统一的方法,多个实现类实现该接口,设计一个抽象类(可有可无,属于辅助类),提供辅助函数策略模式的决定权在用户,系统本身提供不同算法的实现,新增或者删除算法,对各种算法做封装。因此,策略模式多用在算法决策系统中,外部用户只需要决定用哪个算法即可。首先统一接口:public interface ICalculator {      public int calculate(String exp);  }  辅助类:public abstract class AbstractCalculator {           public int[] split(String exp,String opt){          String array[] = exp.split(opt);          int arrayInt[] = new int[2];          arrayInt[0] = Integer.parseInt(array[0]);          arrayInt[1] = Integer.parseInt(array[1]);          return arrayInt;      }  } 三个实现类:public class Plus extends AbstractCalculator implements ICalculator {        @Override      public int calculate(String exp) {          int arrayInt[] = split(exp,"\\+");          return arrayInt[0]+arrayInt[1];      }  }  public class Minus extends AbstractCalculator implements ICalculator {       @Override      public int calculate(String exp) {          int arrayInt[] = split(exp,"-");          return arrayInt[0]-arrayInt[1];      }   }  public class Multiply extends AbstractCalculator implements ICalculator {        @Override      public int calculate(String exp) {          int arrayInt[] = split(exp,"\\*");          return arrayInt[0]*arrayInt[1];      }  }  简单的测试类:public class StrategyTest {       public static void main(String[] args) {          String exp = "2+8";          ICalculator cal = new Plus();          int result = cal.calculate(exp);          System.out.println(result);      }  }  

14、模板方法模式(Template Method)

解释一下模板方法模式,就是指:一个抽象类中,有一个主方法,再定义1...n个方法,可以是抽象的,也可以是实际的方法,定义一个类,继承该抽象类,重写抽象方法,通过调用抽象类,实现对子类的调用


15、观察者模式(Observer)

当一个对象变化时,其它依赖该对象的对象都会收到通知,并且随着变化!对象之间是一种一对多的关系。
MySubject类就是我们的主对象,Observer1和Observer2是依赖于MySubject的对象,当MySubject变化时,Observer1和Observer2必然变化。AbstractSubject类中定义着需要监控的对象列表,可以对其进行修改:增加或删除被监控对象,且当MySubject变化时,负责通知在列表内存在的对象。

一个Observer接口:public interface Observer {      public void update();  } 两个实现类:public class Observer1 implements Observer {        @Override      public void update() {          System.out.println("observer1 has received!");      }  } public class Observer2 implements Observer {        @Override      public void update() {          System.out.println("observer2 has received!");      }    } Subject接口及实现类:public interface Subject {            /*增加观察者*/      public void add(Observer observer);            /*删除观察者*/      public void del(Observer observer);            /*通知所有的观察者*/      public void notifyObservers();            /*自身的操作*/      public void operation();  }



16、迭代子模式(Iterator)



17、责任链模式(Chain of Responsibility)

有多个对象,每个对象持有对下一个对象的引用,这样就会形成一条链,请求在这条链上传递,直到某一对象决定处理该请求。但是发出者并不清楚到底最终那个对象会处理该请求,所以,责任链模式可以实现,在隐瞒客户端的情况下,对系统进行动态的调整。


18、命令模式(Command)

命令模式很好理解,举个例子,司令员下令让士兵去干件事情,从整个事情的角度来考虑,司令员的作用是,发出口令,口令经过传递,传到了士兵耳朵里,士兵去执行。这个过程好在,三者相互解耦,任何一方都不用去依赖其他人,只需要做好自己的事儿就行,司令员要的是结果,不会去关注到底士兵是怎么实现的。


命令模式的目的就是达到命令的发出者和执行者之间解耦,实现请求和执行分开,熟悉Struts的同学应该知道,Struts其实就是一种将请求和呈现分离的技术,其中必然涉及命令模式的思想!
其实每个设计模式都是很重要的一种思想,看上去很熟,其实是因为我们在学到的东西中都有涉及,尽管有时我们并不知道,其实在Java本身的设计之中处处都有体现,像AWT、JDBC、集合类、IO管道或者是Web框架,里面设计模式无处不在。因为我们篇幅有限,很难讲每一个设计模式都讲的很详细,不过我会尽我所能,尽量在有限的空间和篇幅内,把意思写清楚了,更好让大家明白。


19、备忘录模式(Memento)

主要目的是保存一个对象的某个状态,以便在适当的时候恢复对象,个人觉得叫备份模式更形象些,通俗的讲下:假设有原始类A,A中有各种属性,A可以决定需要备份的属性,备忘录类B是用来存储A的一些内部状态,类C呢,就是一个用来存储备忘录的,且只能存储,不能修改等操作。


20、状态模式(State)

核心思想就是:当对象的状态改变时,同时改变其行为,很好理解!就拿QQ来说,有几种状态,在线、隐身、忙碌等,每个状态对应不同的操作,而且你的好友也能看到你的状态,所以,状态模式就两点:1、可以通过改变状态来获得不同的行为。2、你的好友能同时看到你的变化。

package com.xtfggef.dp.state;    /**  * 状态类的核心类  * 2012-12-1  * @author erqing  *  */  public class State {            private String value;            public String getValue() {          return value;      }        public void setValue(String value) {          this.value = value;      }        public void method1(){          System.out.println("execute the first opt!");      }           public void method2(){          System.out.println("execute the second opt!");      }  } package com.xtfggef.dp.state;    /**  * 状态模式的切换类   2012-12-1  * @author erqing  *   */  public class Context {        private State state;        public Context(State state) {          this.state = state;      }        public State getState() {          return state;      }       public void setState(State state) {          this.state = state;      }        public void method() {          if (state.getValue().equals("state1")) {              state.method1();          } else if (state.getValue().equals("state2")) {              state.method2();          }      }  } 测试类:public class Test {        public static void main(String[] args) {                    State state = new State();          Context context = new Context(state);                    //设置第一种状态          state.setValue("state1");          context.method();                    //设置第二种状态          state.setValue("state2");          context.method();      }  }输出: execute the first opt!execute the second opt!根据这个特性,状态模式在日常开发中用的挺多的,尤其是做网站的时候,我们有时希望根据对象的某一属性,区别开他们的一些功能,比如说简单的权限控制等。



21、访问者模式(Visitor)

访问者模式把数据结构和作用于结构上的操作解耦合,使得操作集合可相对自由地演化。访问者模式适用于数据结构相对稳定算法又易变化的系统。因为访问者模式使得算法操作增加变得容易。若系统数据结构对象易于变化,经常有新的数据对象增加进来,则不适合使用访问者模式。访问者模式的优点是增加操作很容易,因为增加操作意味着增加新的访问者。访问者模式将有关行为集中到一个访问者对象中,其改变不影响系统数据结构。其缺点就是增加新的数据结构很困难。


22、中介者模式(Mediator)

中介者模式也是用来降低类类之间的耦合的,因为如果类类之间有依赖关系的话,不利于功能的拓展和维护,因为只要修改一个对象,其它关联的对象都得进行修改。如果使用中介者模式,只需关心和Mediator类的关系,具体类类之间的关系及调度交给Mediator就行,这有点像spring容器的作用。


23、解释器模式(Interpreter)

解释器模式是我们暂时的最后一讲,一般主要应用在OOP开发中的编译器的开发中,所以适用面比较窄。
解释器模式用来做各种各样的解释器,如正则表达式等的解释器等等!


0 0