KM算法+模板(二)

来源:互联网 发布:java代理模式动态类 编辑:程序博客网 时间:2024/06/06 23:56

出处:http://blog.sina.com.cn/s/blog_691ce2b701016reh.html

先说KM算法求二分图的最佳匹配思想,再详讲KM的实现。
【KM算法求二分图的最佳匹配思想】

对于具有二部划分( V1, V2 )的加权完全二分图,其中 V1= { x1, x2, x3, ... , xn }, V2= { y1, y2, y3, ... , yn },边< xi, yj >具有权值 Wi,j 。该带权二分图中一个总权值最大的完美匹配,称之为最佳匹配。
 
记 L(x) 表示结点 x 的标记量,如果对于二部图中的任何边<x,y>,都有 L(x)+ L(y)>= Wx,y,我们称 L 为二部图的可行顶标。
设 G(V,E) 为二部图, G'(V,E') 为二部图的子图。如果对于 G' 中的任何边<x,y> 满足, L(x)+ L(y)== Wx,y,我们称 G'(V,E') 为 G(V,E) 的等价子图。
 
定理一:设 L 是二部图 G 的可行顶标。若 L 等价子图 G有完美匹配 M,则 M 是 G 的最佳匹配。
证明:由于 GL 是 G 的等价子图,M 是 GL 的完美匹配,所以,M 也是 G  的完美匹配。以由于对于匹配 M 的每条边 e ,都有 e∈ E( GL ),而且 M 中每条边覆盖每个顶点正好一次,所以
W( M )= å W(e), e∈ M = å L(x), x∈ V
另一方面,对于 G 的任何完美匹配 M' 有
W( M' )= å W(e), e∈ M' <= å L(x), x∈ V
于是 W( M )>= W( M' ),即 M 是 G 的最优匹配。
  
另外计算 d 值的时候可以进行一些优化。
定义 slack(y)= min{ (x,y)| Lx(x)+ Ly(y)- W(x,y),x∈ S,  y∉ T }
这样能在寻找增广路径的时候就顺便将 slack 求出。
(以上为摘上网络)

【KM算法及其具体过程】
(1)可行点标:每个点有一个标号,记lx[i]为X方点i的标号,ly[j]为Y方点j的标号。如果对于图中的任意边(i, j, W)都有lx[i]+ly[j]>=W,则这一组点标是可行的。特别地,对于lx[i]+ly[j]=W的边(i, j, W),称为可行边
(2)KM 算法的核心思想就是通过修改某些点的标号(但要满足点标始终是可行的),不断增加图中的可行边总数,直到图中存在仅由可行边组成的完全匹配为止,此时这个匹配一定是最佳的(因为由可行点标的的定义,图中的任意一个完全匹配,其边权总和均不大于所有点的标号之和,而仅由可行边组成的完全匹配的边权总和等于所有点的标号之和,故这个匹配是最佳的)。一开始,求出每个点的初始标号:lx[i]=max{e.W|e.x=i}(即每个X方点的初始标号为与这个X方点相关联的权值最大的边的权值),ly[j]=0(即每个Y方点的初始标号为0)。这个初始点标显然是可行的,并且,与任意一个X方点关联的边中至少有一条可行边
(3)然后,从每个X方点开始DFS增广。DFS增广的过程与最大匹配的Hungary算法基本相同,只是要注意两点:一是只找可行边,二是要把搜索过程中遍历到的X方点全部记下来(可以用vst搞一下),以进行后面的修改;
(4)增广的结果有两种:若成功(找到了增广轨),则该点增广完成,进入下一个点的增广。若失败(没有找到增广轨),则需要改变一些点的标号,使得图中可行边的数量增加。方法为:将所有在增广轨中(就是在增广过程中遍历到)的X方点的标号全部减去一个常数d,所有在增广轨中的Y方点的标号全部加上一个常数d,则对于图中的任意一条边(i, j, W)(i为X方点,j为Y方点):
<1>i和j都在增广轨中:此时边(i, j)的(lx[i]+ly[j])值不变,也就是这条边的可行性不变(原来是可行边则现在仍是,原来不是则现在仍不是);
<2>i在增广轨中而j不在:此时边(i, j)的(lx[i]+ly[j])的值减少了d,也就是原来这条边不是可行边(否则j就会被遍历到了),而现在可能是;
<3>j在增广轨中而i不在:此时边(i, j)的(lx[i]+ly[j])的值增加了d,也就是原来这条边不是可行边(若这条边是可行边,则在遍历到j时会紧接着执行DFS(i),此时i就会被遍历到),现在仍不是;
<4>i和j都不在增广轨中:此时边(i, j)的(lx[i]+ly[j])值不变,也就是这条边的可行性不变。
这样,在进行了这一步修改操作后,图中原来的可行边仍可行,而原来不可行的边现在则可能变为可行边。那么d的值应取多少?显然,整个点标不能失去可行性,也就是对于上述的第<2>类边,其lx[i]+ly[j]>=W这一性质不能被改变,故取所有第<2>类边的 (lx[i]+ly[j]-W)的最小值作为d值即可。这样一方面可以保证点标的可行性,另一方面,经过这一步后,图中至少会增加一条可行边。
(5)修改后,继续对这个X方点DFS增广,若还失败则继续修改,直到成功为止;
(6)以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶标,每次修改顶标时由于要枚举边来求d值,复杂度为O(n2)。实际上KM算法的复杂度是可以做到O(n3)的。我们给每个Y顶点一个“松弛量”函数slack,每次开始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成原值与 A[i]+B[j]-w[i,j]的较小值。这样,在修改顶标时,取所有不在交错树中的Y顶点的slack值中的最小值作为d值即可。但还要注意一点:修改顶标后,要把所有不在交错树中的Y顶点的slack值都减去d。

【求二分图的最小匹配】
只需把权值取反,变为负的,再用KM算出最大权匹配,取反则为其最小权匹配。

hdoj 2255

#include <stdio.h>
#include <string.h>
#define M 310
#define inf 0x3f3f3f3f

int n,nx,ny;
int link[M],lx[M],ly[M],slack[M];    //lx,ly为顶标,nx,ny分别为x点集y点集的个数
int visx[M],visy[M],w[M][M];

int DFS(int x)
{
    visx[x] = 1;
    for (int y = 1;y <= ny;y ++)
    {
        if (visy[y])
            continue;
        int t = lx[x] + ly[y] - w[x][y];
        if (t == 0)       //
        {
            visy[y] = 1;
            if (link[y] == -1||DFS(link[y]))
            {
                link[y] = x;
                return 1;
            }
        }
        else if (slack[y] > t)  //不在相等子图中slack 取最小的
            slack[y] = t;
    }
    return 0;
}
int KM()
{
    int i,j;
    memset (link,-1,sizeof(link));
    memset (ly,0,sizeof(ly));
    for (i = 1;i <= nx;i ++)            //lx初始化为与它关联边中最大的
        for (j = 1,lx[i] = -inf;j <= ny;j ++)
            if (w[i][j] > lx[i])
                lx[i] = w[i][j];

    for (int x = 1;x <= nx;x ++)
    {
        for (i = 1;i <= ny;i ++)
            slack[i] = inf;
        while (1)
        {
            memset (visx,0,sizeof(visx));
            memset (visy,0,sizeof(visy));
            if (DFS(x))     //若成功(找到了增广轨),则该点增广完成,进入下一个点的增广
                break;  //若失败(没有找到增广轨),则需要改变一些点的标号,使得图中可行边的数量增加。
                        //方法为:将所有在增广轨中(就是在增广过程中遍历到)的X方点的标号全部减去一个常数d,
                        //所有在增广轨中的Y方点的标号全部加上一个常数d
            int d = inf;
            for (i = 1;i <= ny;i ++)
                if (!visy[i]&&d > slack[i])
                    d = slack[i];
            for (i = 1;i <= nx;i ++)
                if (visx[i])
                    lx[i] -= d;
            for (i = 1;i <= ny;i ++)  //修改顶标后,要把所有不在交错树中的Y顶点的slack值都减去d
                if (visy[i])
                    ly[i] += d;
                else
                    slack[i] -= d; //这步操作貌似在某些KM的代码实现中并没有给出啊!!!是不是可有可无的呢?疑问!
        }
    }
    int res = 0;
    for (i = 1;i <= ny;i ++)
        if (link[i] > -1)
            res += w[link[i]][i];
    return res;
}
int main ()
{
    int i,j;
    while (scanf ("%d",&n)!=EOF)
    {
        nx = ny = n;
      //  memset (w,0,sizeof(w));
        for (i = 1;i <= n;i ++)
            for (j = 1;j <= n;j ++)
                scanf ("%d",&w[i][j]);
        int ans = KM();
        printf ("%d\n",ans);
    }
    return 0;
}

0 0
原创粉丝点击