关于混合高斯、EM和K-means

来源:互联网 发布:网络电视 卡不卡 编辑:程序博客网 时间:2024/06/05 02:45

与k-means一样,给定的训练样本是clip_image002,我们将隐含类别标签用clip_image004表示。与k-means的硬指定不同,我们首先认为clip_image004[1]是满足一定的概率分布的,这里我们认为满足多项式分布,clip_image006,其中clip_image008clip_image004[2]有k个值{1,…,k}可以选取。而且我们认为在给定clip_image004[3]后,clip_image010满足多值高斯分布,即clip_image012。由此可以得到联合分布clip_image014

      整个模型简单描述为对于每个样例clip_image010[1],我们先从k个类别中按多项式分布抽取一个clip_image016,然后根据clip_image016[1]所对应的k个多值高斯分布中的一个生成样例clip_image010[2],。整个过程称作混合高斯模型。注意的是这里的clip_image016[2]仍然是隐含随机变量。模型中还有三个变量clip_image018clip_image020。最大似然估计为clip_image022。对数化后如下:

      clip_image023

      这个式子的最大值是不能通过前面使用的求导数为0的方法解决的,因为求的结果不是close form。但是假设我们知道了每个样例的clip_image016[3],那么上式可以简化为:

      clip_image024

       这时候我们再来对clip_image018[1]clip_image020[1]进行求导得到:

      clip_image025

      clip_image027就是样本类别中clip_image029的比率。clip_image031是类别为j的样本特征均值,clip_image033是类别为j的样例的特征的协方差矩阵。

实际上,当知道clip_image016[4]后,最大似然估计就近似于高斯判别分析模型(Gaussian discriminant analysis model)了。所不同的是GDA中类别y是伯努利分布,而这里的z是多项式分布,还有这里的每个样例都有不同的协方差矩阵,而GDA中认为只有一个。

      之前我们是假设给定了clip_image016[5],实际上clip_image016[6]是不知道的。那么怎么办呢?考虑之前提到的EM的思想,第一步是猜测隐含类别变量z,第二步是更新其他参数,以获得最大的最大似然估计。用到这里就是:

循环下面步骤,直到收敛: {

      (E步)对于每一个i和j,计算

                  clip_image035

      (M步),更新参数:

                  clip_image036

}

      在E步中,我们将其他参数clip_image038看作常量,计算clip_image040的后验概率,也就是估计隐含类别变量。估计好后,利用上面的公式重新计算其他参数,计算好后发现最大化最大似然估计时,clip_image042值又不对了,需要重新计算,周而复始,直至收敛。

      clip_image042[1]的具体计算公式如下:

      clip_image043

      这个式子利用了贝叶斯公式。

      这里我们使用clip_image045代替了前面的clip_image047,由简单的0/1值变成了概率值。

      对比K-means可以发现,这里使用了“软”指定,为每个样例分配的类别clip_image040[1]是有一定的概率的,同时计算量也变大了,每个样例i都要计算属于每一个类别j的概率。与K-means相同的是,结果仍然是局部最优解。对其他参数取不同的初始值进行多次计算不失为一种好方法。



 

下面累述一下K-means与EM的关系,首先回到初始问题,我们目的是将样本分成k个类,其实说白了就是求每个样例x的隐含类别y,然后利用隐含类别将x归类。由于我们事先不知道类别y,那么我们首先可以对每个样例假定一个y吧,但是怎么知道假定的对不对呢?怎么评价假定的好不好呢?我们使用样本的极大似然估计来度量,这里是就是x和y的联合分布P(x,y)了。如果找到的y能够使P(x,y)最大,那么我们找到的y就是样例x的最佳类别了,x顺手就聚类了。但是我们第一次指定的y不一定会让P(x,y)最大,而且P(x,y)还依赖于其他未知参数,当然在给定y的情况下,我们可以调整其他参数让P(x,y)最大。但是调整完参数后,我们发现有更好的y可以指定,那么我们重新指定y,然后再计算P(x,y)最大时的参数,反复迭代直至没有更好的y可以指定。

     这个过程有几个难点,第一怎么假定y?是每个样例硬指派一个y还是不同的y有不同的概率,概率如何度量。第二如何估计P(x,y),P(x,y)还可能依赖很多其他参数,如何调整里面的参数让P(x,y)最大。这些问题在以后的篇章里回答。

     这里只是指出EM的思想,E步就是估计隐含类别y的期望值,M步调整其他参数使得在给定类别y的情况下,极大似然估计P(x,y)能够达到极大值。然后在其他参数确定的情况下,重新估计y,周而复始,直至收敛。

     上面的阐述有点费解,对应于K-means来说就是我们一开始不知道每个样例clip_image020[10]对应隐含变量也就是最佳类别clip_image022[6]。最开始可以随便指定一个clip_image022[7]给它,然后为了让P(x,y)最大(这里是要让J最小),我们求出在给定c情况下,J最小时的clip_image014[10](前面提到的其他未知参数),然而此时发现,可以有更好的clip_image022[8](质心与样例距clip_image020[11]离最小的类别)指定给样例clip_image020[12],那么clip_image022[9]得到重新调整,上述过程就开始重复了,直到没有更好的clip_image022[10]指定。这样从K-means里我们可以看出它其实就是EM的体现,E步是确定隐含类别变量clip_image024[6],M步更新其他参数clip_image018[9]来使J最小化。这里的隐含类别变量指定方法比较特殊,属于硬指定,从k个类别中硬选出一个给样例,而不是对每个类别赋予不同的概率。总体思想还是一个迭代优化过程,有目标函数,也有参数变量,只是多了个隐含变量,确定其他参数估计隐含变量,再确定隐含变量估计其他参数,直至目标函数最优。

0 0
原创粉丝点击