C++回调函数,CALLBACK

来源:互联网 发布:网络攻击防范措施 编辑:程序博客网 时间:2024/05/20 20:19

回调函数

回调函数就是一个通过函数指针调用的函数。如果你把函数的指针(地址)作为参数传递给另一个函数,当这个指针被用为调用它所指向的函数

时,我们就说这是回调函数。回调函数不是由该函数的实现方直接调用,而是在特定的事件或条件发生时由另外的一方调用的,用于对该事

件或条件进行响应。

目录

    回调函数实现的机制是
    为什么要使用回调函数
    简单的回调函数实现

        代码实现
        调用约定

    回调函数实现的机制是
    为什么要使用回调函数
    简单的回调函数实现

        代码实现
        调用约定

回调函数实现的机制是

  (2)提供函数实现的一方在初始化的时候,将回调函数的函数指针注册给调用者;

  (3)当特定的事件或条件发生的时候,调用者使用函数指针调用回调函数对事件进行处理。

为什么要使用回调函数

  如果想知道回调函数在实际中有什么作用,先假设有这样一种情况,我们要编写一个库,它提供了某些排序算法的实现,如冒泡排序、

快速排序、shell排序、shake排序等等,但为使库更加通用,不想在函数中嵌入排序逻辑,而让使用者来实现相应的逻辑;或者,想让库可用于

多种数据类型(int、float、string),此时,该怎么办呢?可以使用函数指针,并进行回调。

  回调可用于通知机制,例如,有时要在程序中设置一个计时器,每到一定时间,程序会得到相应的通知,但通知机制的实现者对我们的

程序一无所知。而此时,就需有一个特定原型的函数指针,用这个指针来进行回调,来通知我们的程序事件已经发生。实际上,SetTimer()

API使用了一个回调函数来通知计时器,而且,万一没有提供回调函数,它还会把一个消息发往程序的消息队列。

  另一个使用回调机制的API函数是EnumWindow(),它枚举屏幕上所有的顶层窗口,为每个窗口调用一个程序提供的函数,并传递窗口的

处理程序。如果被调用者返回一个值,就继续进行迭代,否则,退出。EnumWindow()并不关心被调用者在何处,也不关心被调用者用它传递

的处理程序做了什么,它只关心返回值,因为基于返回值,它将继续执行或退出。

  不管怎么说,回调函数是继续自C语言的,因而,在C++中,应只在与C代码建立接口,或与已有的回调接口打交道时,才使用回调函数

。除了上述情况,在C++中应使用虚拟方法或函数符(functor),而不是回调函数。
==============================================================================
一个简单的回调函数实现

下面创建了一个sort.dll的动态链接库,它导出了一个名为CompareFunction的类型--typedef int (__stdcall *CompareFunction)(const byte*, const

byte*),它就是回调函数的类型。另外,它也导出了两个方法:Bubblesort()和Quicksort(),这两个方法原型相同,但实现了不同 的排序算法。

void DLLDIR __stdcall Bubblesort(byte* array,int size,int elem_size,CompareFunction cmpFunc);

void DLLDIR __stdcall Quicksort(byte* array,int size,int elem_size,CompareFunction cmpFunc);

这两个函数接受以下参数:

·byte * array:指向元素数组的指针(任意类型)。

·int size:数组中元素的个数。

·int elem_size:数组中一个元素的大小,以字节为单位。

·CompareFunction cmpFunc:带有上述原型的指向回调函数的指针。

这两个函数的会对数组进行某种排序,但每次都需决定两个元素哪个排在前面,而函数中有一个回调函数,其地址是作为一个参数传递进来

的。对编写者来说,不 必介意函数在何处实现,或它怎样被实现的,所需在意的只是两个用于比较的元素的地址,并返回以下的某个值(库

的编写者和使用者都必须遵守这个约定):

·-1:如果第一个元素较小,那它在已排序好的数组中,应该排在第二个元素前面。

·0:如果两个元素相等,那么它们的相对位置并不重要,在已排序好的数组中,谁在前面都无所谓。

·1:如果第一个元素较大,那在已排序好的数组中,它应该排第二个元素后面。

基于以上约定,函数Bubblesort()的实现如下,Quicksort()就稍微复杂一点:

void DLLDIR __stdcall Bubblesort(byte* array,int size,int elem_size,CompareFunction cmpFunc)
{
for(int i=0; i < size; i++)
{
for(int j=0; j < size-1; j++)
{
//回调比较函数
if(1 == (*cmpFunc)(array+j*elem_size,array+(j+1)*elem_size))
{
//两个相比较的元素相交换
byte* temp = new byte[elem_size];
memcpy(temp, array+j*elem_size, elem_size);
memcpy(array+j*elem_size,array+(j+1)*elem_size,elem_size);
memcpy(array+(j+1)*elem_size, temp, elem_size);
delete [] temp;
}
}
}
}

注意:因为实现中使用了memcpy(),所以函数在使用的数据类型方面,会有所局限。

对使用者来说,必须有一个回调函数,其地址要传递给Bubblesort()函数。下面有二个简单的示例,一个比较两个整数,而另一个比较两个字

符串:

int __stdcall CompareInts(const byte* velem1, const byte* velem2)
{
int elem1 = *(int*)velem1;
int elem2 = *(int*)velem2;

if(elem1 < elem2)
return -1;
if(elem1 > elem2)
return 1;

return 0;
}

int __stdcall CompareStrings(const byte* velem1, const byte* velem2)
{
const char* elem1 = (char*)velem1;
const char* elem2 = (char*)velem2;
return strcmp(elem1, elem2);
}

下面另有一个程序,用于测试以上所有的代码,它传递了一个有5个元素的数组给Bubblesort()和Quicksort(),同时还传递了一个指向回调函数

的指针。

int main(int argc, char* argv[])
{
int i;
int array[] = {5432, 4321, 3210, 2109, 1098};

cout << "Before sorting ints with Bubblesort\n";
for(i=0; i < 5; i++)
cout << array[i] << '\n';

Bubblesort((byte*)array, 5, sizeof(array[0]), &CompareInts);

cout << "After the sorting\n";
for(i=0; i < 5; i++)
cout << array[i] << '\n';

const char str[5][10] = {"estella","danielle","crissy","bo","angie"};

cout << "Before sorting strings with Quicksort\n";
for(i=0; i < 5; i++)
cout << str[i] << '\n';

Quicksort((byte*)str, 5, 10, &CompareStrings);

cout << "After the sorting\n";
for(i=0; i < 5; i++)
cout << str[i] << '\n';

return 0;
}

如果想进行降序排序(大元素在先),就只需修改回调函数的代码,或使用另一个回调函数,这样编程起来灵活性就比较大了。

调用约定

上面的代码中,可在函数原型中找到__stdcall,因为它以双下划线打头,所以它是一个特定于编译器的扩展,说到底也就是微软的实现。任何

支持开发 基于Win32的程序都必须支持这个扩展或其等价物。以__stdcall标识的函数使用了标准调用约定,为什么叫标准约定呢,因为所有的

Win32 API(除了个别接受可变参数的除外)都使用它。标准调用约定的函数在它们返回到调用者之前,都会从堆栈中移除掉参数,这也是

Pascal的标准约定。但 在C/C++中,调用约定是调用者负责清理堆栈,而不是被调用函数;为强制函数使用C/C++调用约定,可使用__cdecl

。另外,可变参数函数也使用 C/C++调用约定。

Windows操作系统采用了标准调用约定(Pascal约定),因为其可减小代码的体积。这点对早期的Windows来说非常重要,因为那时它运行在

只有640KB内存的电脑上。

如果你不喜欢__stdcall,还可以使用CALLBACK宏,它定义在windef.h中:

#define CALLBACK __stdcallor

#define CALLBACK PASCAL //而PASCAL在此被#defined成__stdcall

作为回调函数的C++方法

因为平时很可能会使用到C++编写代码,也许会想到把回调函数写成类中的一个方法,但先来看看以下的代码:

class CCallbackTester
{
public:
int CALLBACK CompareInts(const byte* velem1, const byte* velem2);
};

Bubblesort((byte*)array, 5, sizeof(array[0]),
&CCallbackTester::CompareInts);

如果使用微软的编译器,将会得到下面这个编译错误:

error C2664: 'Bubblesort' : cannot convert parameter 4 from 'int (__stdcall CCallbackTester::*)(const unsigned char *,const unsigned char *)' to 'int

(__stdcall *)(const unsigned char *,const unsigned char *)' There is no context in which this conversion is possible

这是因为非静态成员函数有一个额外的参数:this指针,这将迫使你在成员函数前面加上static。当然,还有几种方法可以解决这个问题,但限

于篇幅,就不再论述了。

 因为可以把调用者与被调用者分开。调用者不关心谁是被调用者,所有它需知道的,只是存在一个具有某种特定原型、某些限制条件(如返

回值为int)的被调用函数。  (1)定义一个回调函数;

=======================================================================

httpRecvFile.h



class IFData;

//当打开本地文件,或者下载网络文件超过128K,回调调用该函数
typedef struct tagOnRecvData
{
    IFetchData *readFile;
    int nValidLength;
    int nDownloadSize;
    int nFileSize;
    BOOL bLocalFile;
} _GL_RECV_DATA;

typedef void (CALLBACK *CallbackOnFileValid)(DWORD_PTR dwInstance, _GL_RECV_DATA *pRecvData);

class IFData
{
public:
    virtual ~IFetchData(){};

    //开始数据获取
    virtual BOOL BeginRead(const char *filename, const char *url) = 0;

 
    //读取到数据时的回调
    virtual void SetOnFileValidCallback(CallbackOnFileValid fn, DWORD_PTR dwInstance) = 0;

};

class FetchLocalFile : public IFData
{
    CallbackOnFileValid m_fnOnFileValid;
    DWORD_PTR m_dwInstance;

    GLBinaryFileRead m_file;
    int m_nFileSize;

public:


    //读取到数据时的回调
    virtual void SetOnFileValidCallback(CallbackOnFileValid fn, DWORD_PTR dwInstance);

};

httpRecvFile.cpp

//读取到数据时的回调
void FetchLocalFile::SetOnFileValidCallback(CallbackOnFileValid fn, DWORD_PTR dwInstance)
{
    m_fnOnFileValid = fn;
    m_dwInstance = dwInstance;
}



BOOL FetchLocalFile::BeginRead(const char *filename, const char *url )
{
    m_file.Close();
    
    if( m_file.Open(filename) )
    {
        wstring strFilename = GLConvert::ToWstring(filename);
        int nValidLength = GLFileSystem::GetFileSize(strFilename);
        m_nFileSize = nValidLength;
        if( m_fnOnFileValid )
        {
            _GL_RECV_DATA rd = {0};
            rd.bLocalFile = TRUE;
            rd.nDownloadSize = nValidLength;
            rd.nFileSize = nValidLength;
            rd.nValidLength = nValidLength;
            rd.readFile = this;
            
            m_fnOnFileValid(m_dwInstance, &rd);  
        }

        return TRUE;
    }

    return FALSE;
}


musicPlayerImpl.h

IFData *m_readFile;

static void CALLBACK OnFileValid(DWORD_PTR dwInstance, _GL_RECV_DATA *pRecvData);


musicPlayerImpl.cpp

{
    m_readFile->SetOnFileValidCallback(OnFileValid, (DWORD_PTR)this);
    m_readFile->SetOnHaveFlowCallback(OnHaveFlow, (DWORD_PTR)this);
}

void CALLBACK GLMusicPlayerImpl::OnFileValid(DWORD_PTR dwInstance, _GL_RECV_DATA *pRecvData)
{
    GLMusicPlayerImpl *pThis = (GLMusicPlayerImpl*)dwInstance;
    pThis->OnFileValid(pRecvData);
}


void GLMusicPlayerImpl::OnFileValid(_GL_RECV_DATA *pRecvData)
{
    if( pRecvData == NULL )
        return ;

    if( pRecvData->nFileSize <= 0 )
        return ;

    if( pRecvData->nValidLength > 1024*128 || pRecvData->nDownloadSize == pRecvData->nFileSize )
    {...}
    ......

}


======================================================================================



0 0