(Android系统)android property浅析

来源:互联网 发布:js 数组拼接去重 编辑:程序博客网 时间:2024/06/05 20:47
android property,相信各位android平台的开发人员用到的不会少,但是property的具体机制大家可能知道的不多,这里利用空闲时间大致了解了一些,特此分享跟大家,如有谬误,欢迎指正


android 1号进程进程init进程在开机的时候就会调用property_init函数,至于init是怎么起来的,这里不是重点,所以暂时先不介绍,property_init的具体flow如下:
system/core/init/init.c
void property_init(void){    init_property_area();                                                                                                         }

system/core/init/property_service.c
static int init_property_area(void)                                                                                               {    if (property_area_inited)        return -1;    if(__system_property_area_init())        return -1;    if(init_workspace(&pa_workspace, 0))        return -1;    fcntl(pa_workspace.fd, F_SETFD, FD_CLOEXEC);    property_area_inited = 1;    return 0;}

bionic/libc/bionic/system_properties.c
int __system_property_area_init(){    return map_prop_area_rw();                                                                                                     }

把property_filename映射到共享内存,之所以要使用共享内存是因为其他进程也需要使用property,这个是property的最基本功能,注意这里有一个全局变量__system_property_area__很重要,这个是以后所有property的root,也就是说通过这个变量就可以遍历其他property


具体property file的路径如下:

cheny.le@cheny-desktop:~/kitkat2_git/bionic$ grep property_filename * -nrlibc/bionic/system_properties.c:111:static char property_filename[PATH_MAX] = PROP_FILENAME;cheny.le@cheny-desktop:~/kitkat2_git/bionic$ grep PROP_FILENAME * -nrlibc/include/sys/_system_properties.h:44:#define PROP_FILENAME "/dev/__properties__"

bionic/libc/bionic/system_properties.c
static int map_prop_area_rw(){    prop_area *pa;    int fd;    int ret;    /* dev is a tmpfs that we can use to carve a shared workspace     * out of, so let's do that...     */    fd = open(property_filename, O_RDWR | O_CREAT | O_NOFOLLOW | O_CLOEXEC |            O_EXCL, 0444);    if (fd < 0) {        if (errno == EACCES) {            /* for consistency with the case where the process has already             * mapped the page in and segfaults when trying to write to it             */            abort();        }        return -1;    }    ret = fcntl(fd, F_SETFD, FD_CLOEXEC);    if (ret < 0)        goto out;    if (ftruncate(fd, PA_SIZE) < 0)        goto out;    pa_size = PA_SIZE;    pa_data_size = pa_size - sizeof(prop_area);                                                                                        compat_mode = false;    pa = mmap(NULL, pa_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);    if(pa == MAP_FAILED)        goto out;    memset(pa, 0, pa_size);    pa->magic = PROP_AREA_MAGIC;    pa->version = PROP_AREA_VERSION;    /* reserve root node */    pa->bytes_used = sizeof(prop_bt);    /* plug into the lib property services */    __system_property_area__ = pa;    close(fd);    return 0;out:    close(fd);    return -1;}


property init之后就需要加载boot所需的default property,跟property相关的文件定义如下:
cheny.le@cheny-desktop:~/kitkat2_git/bionic$ grep PROP_PATH_SYSTEM_BUILD * -nrlibc/include/sys/_system_properties.h:82:#define PROP_PATH_SYSTEM_BUILD     "/system/build.prop"cheny.le@cheny-desktop:~/kitkat2_git/bionic$ grep PROP_PATH_SYSTEM_DEFAULT * -nrlibc/include/sys/_system_properties.h:83:#define PROP_PATH_SYSTEM_DEFAULT   "/system/default.prop"cheny.le@cheny-desktop:~/kitkat2_git/bionic$ grep PROP_PATH_RAMDISK_DEFAULT * -nrlibc/include/sys/_system_properties.h:81:#define PROP_PATH_RAMDISK_DEFAULT  "/default.prop"


system/core/init/init.c
void property_load_boot_defaults(void){    load_properties_from_file(PROP_PATH_RAMDISK_DEFAULT);                                                                         }

system/core/init/property_service.c
static void load_properties_from_file(const char *fn)                                                                             {    char *data;    unsigned sz;     data = read_file(fn, &sz);    if(data != 0) {        load_properties(data);        free(data);    }   }


read file的作用就是把file的内容读到buffer里面,然后确保以'/0'结尾
system/core/init/util.c
void *read_file(const char *fn, unsigned *_sz){    char *data;    int sz;    int fd;    struct stat sb;    data = 0;    fd = open(fn, O_RDONLY);    if(fd < 0) return 0;    // for security reasons, disallow world-writable    // or group-writable files    if (fstat(fd, &sb) < 0) {        ERROR("fstat failed for '%s'\n", fn);        goto oops;    }    if ((sb.st_mode & (S_IWGRP | S_IWOTH)) != 0) {        ERROR("skipping insecure file '%s'\n", fn);        goto oops;    }    sz = lseek(fd, 0, SEEK_END);    if(sz < 0) goto oops;    if(lseek(fd, 0, SEEK_SET) != 0) goto oops;    data = (char*) malloc(sz + 2);    if(data == 0) goto oops;    if(read(fd, data, sz) != sz) goto oops;    close(fd);    data[sz] = '\n';    data[sz+1] = 0;    if(_sz) *_sz = sz;    return data;oops:    close(fd);    if(data != 0) free(data);    return 0;}

把buffer的内容按指定格式解析出来,然后用property_set设置到系统中,具体property_set的流程后续给出具体解释
system/core/init/property_service.c
static void load_properties(char *data)                                                                                           {    char *key, *value, *eol, *sol, *tmp;    sol = data;    while((eol = strchr(sol, '\n'))) {        key = sol;        *eol++ = 0;        sol = eol;        value = strchr(key, '=');        if(value == 0) continue;        *value++ = 0;        while(isspace(*key)) key++;        if(*key == '#') continue;        tmp = value - 2;        while((tmp > key) && isspace(*tmp)) *tmp-- = 0;        while(isspace(*value)) value++;        tmp = eol - 2;        while((tmp > value) && isspace(*tmp)) *tmp-- = 0;        property_set(key, value);    }}


init的main里面接下来会跑property的service,这个service会首先加载system build和system defaule两个property文件,然后创建socket用来监听bionic 里面system_properties.c发送过来的事件,关于事件的解析后续会进行分析
cheny.le@cheny-desktop:~/kitkat2_git/bionic$ grep  PROP_SERVICE_NAME * -nrlibc/include/sys/_system_properties.h:43:#define PROP_SERVICE_NAME "property_service"

void start_property_service(void){    int fd;    load_properties_from_file(PROP_PATH_SYSTEM_BUILD);    load_properties_from_file(PROP_PATH_SYSTEM_DEFAULT);                                                                              load_override_properties();    /* Read persistent properties after all default values have been loaded. */    load_persistent_properties();    fd = create_socket(PROP_SERVICE_NAME, SOCK_STREAM, 0666, 0, 0);    if(fd < 0) return;    fcntl(fd, F_SETFD, FD_CLOEXEC);    fcntl(fd, F_SETFL, O_NONBLOCK);    listen(fd, 8);    property_set_fd = fd;}


cheny.le@cheny-desktop:~/kitkat2_git/system/core$ grep ANDROID_SOCKET_DIR * -nrinclude/cutils/sockets.h:33:#define ANDROID_SOCKET_DIR"/dev/socket"
这也就是说会建立一个/dev/socket/property_service的socket,然后listen这个socket


int create_socket(const char *name, int type, mode_t perm, uid_t uid, gid_t gid){    struct sockaddr_un addr;    int fd, ret;    char *secon;    fd = socket(PF_UNIX, type, 0);    if (fd < 0) {        ERROR("Failed to open socket '%s': %s\n", name, strerror(errno));        return -1;    }    memset(&addr, 0 , sizeof(addr));    addr.sun_family = AF_UNIX;    snprintf(addr.sun_path, sizeof(addr.sun_path), ANDROID_SOCKET_DIR"/%s",             name);    ret = unlink(addr.sun_path);    if (ret != 0 && errno != ENOENT) {        ERROR("Failed to unlink old socket '%s': %s\n", name, strerror(errno));        goto out_close;    }    secon = NULL;    if (sehandle) {        ret = selabel_lookup(sehandle, &secon, addr.sun_path, S_IFSOCK);        if (ret == 0)            setfscreatecon(secon);    }    ret = bind(fd, (struct sockaddr *) &addr, sizeof (addr));    if (ret) {        ERROR("Failed to bind socket '%s': %s\n", name, strerror(errno));        goto out_unlink;    }    setfscreatecon(NULL);    freecon(secon);    chown(addr.sun_path, uid, gid);    chmod(addr.sun_path, perm);    INFO("Created socket '%s' with mode '%o', user '%d', group '%d'\n",         addr.sun_path, perm, uid, gid);    return fd;out_unlink:      unlink(addr.sun_path);out_close:    close(fd);    return -1;}




init的main接下来会把建立起来的socket加到poll的列表中,如果有数据进来的时候就去调用handle_property_set_fd
system/core/init/init.c
if (!property_set_fd_init && get_property_set_fd() > 0) {ufds[fd_count].fd = get_property_set_fd();ufds[fd_count].events = POLLIN;ufds[fd_count].revents = 0;fd_count++;property_set_fd_init = 1;}if (ufds[i].revents == POLLIN) {if (ufds[i].fd == get_property_set_fd())handle_property_set_fd();


可以看到handle_property_set_fd会去读取property_set_fd接受到的信息,这个socket就是前面start_property_service里面创建的socket哈,非常的关键,收到的msg如果不是指定size的,大致判断为不是system_properties.c发送过来的,直接drop掉,如果满足条件接下来判断msg的cmd,如果是PROP_MSG_SETPROP,且是以“ctl.”开头的,那就就检查property name和permission是否符合要求,符合要求的话就调用handle_control_message去做具体的处理
system/core/init/property_service.c
void handle_property_set_fd(){    prop_msg msg;    int s;    int r;    int res;    struct ucred cr;    struct sockaddr_un addr;    socklen_t addr_size = sizeof(addr);    socklen_t cr_size = sizeof(cr);    char * source_ctx = NULL;    if ((s = accept(property_set_fd, (struct sockaddr *) &addr, &addr_size)) < 0) {        return;    }    /* Check socket options here */    if (getsockopt(s, SOL_SOCKET, SO_PEERCRED, &cr, &cr_size) < 0) {        close(s);        ERROR("Unable to receive socket options\n");        return;    }    r = TEMP_FAILURE_RETRY(recv(s, &msg, sizeof(msg), 0));    if(r != sizeof(prop_msg)) {        ERROR("sys_prop: mis-match msg size received: %d expected: %d errno: %d\n",              r, sizeof(prop_msg), errno);        close(s);        return;    }    switch(msg.cmd) {    case PROP_MSG_SETPROP:        msg.name[PROP_NAME_MAX-1] = 0;        msg.value[PROP_VALUE_MAX-1] = 0;        if (!is_legal_property_name(msg.name, strlen(msg.name))) {            ERROR("sys_prop: illegal property name. Got: \"%s\"\n", msg.name);            close(s);            return;        }        getpeercon(s, &source_ctx);        if(memcmp(msg.name,"ctl.",4) == 0) {            // Keep the old close-socket-early behavior when handling            // ctl.* properties.            close(s);            if (check_control_perms(msg.value, cr.uid, cr.gid, source_ctx)) {                handle_control_message((char*) msg.name + 4, (char*) msg.value);            } else {                ERROR("sys_prop: Unable to %s service ctl [%s] uid:%d gid:%d pid:%d\n",                        msg.name + 4, msg.value, cr.uid, cr.gid, cr.pid);            }        } else {            if (check_perms(msg.name, cr.uid, cr.gid, source_ctx)) {                property_set((char*) msg.name, (char*) msg.value);            } else {                ERROR("sys_prop: permission denied uid:%d  name:%s\n",                      cr.uid, msg.name);            }            // Note: bionic's property client code assumes that the            // property server will not close the socket until *AFTER*            // the property is written to memory.            close(s);        }        freecon(source_ctx);        break;    default:        close(s);        break;    }}


关于具体的参数和权限检查如下:
property name检查:
static bool is_legal_property_name(const char* name, size_t namelen){    size_t i;    bool previous_was_dot = false;    if (namelen >= PROP_NAME_MAX) return false;    if (namelen < 1) return false;    if (name[0] == '.') return false;    if (name[namelen - 1] == '.') return false;    /* Only allow alphanumeric, plus '.', '-', or '_' */    /* Don't allow ".." to appear in a property name */    for (i = 0; i < namelen; i++) {        if (name[i] == '.') {            if (previous_was_dot == true) return false;            previous_was_dot = true;            continue;        }        previous_was_dot = false;        if (name[i] == '_' || name[i] == '-') continue;        if (name[i] >= 'a' && name[i] <= 'z') continue;        if (name[i] >= 'A' && name[i] <= 'Z') continue;        if (name[i] >= '0' && name[i] <= '9') continue;        return false;    }    return true;}




permission检查:
static int check_control_perms(const char *name, unsigned int uid, unsigned int gid, char *sctx) {
    int i;    if (uid == AID_SYSTEM || uid == AID_ROOT)      return check_control_mac_perms(name, sctx);    /* Search the ACL */    for (i = 0; control_perms[i].service; i++) {        if (strcmp(control_perms[i].service, name) == 0) {            if ((uid && control_perms[i].uid == uid) ||                (gid && control_perms[i].gid == gid)) {                return check_control_mac_perms(name, sctx);            }        }    }    return 0;}




static int check_control_mac_perms(const char *name, char *sctx)                                                                  {    /*     *  Create a name prefix out of ctl.<service name>     *  The new prefix allows the use of the existing     *  property service backend labeling while avoiding     *  mislabels based on true property prefixes.     */    char ctl_name[PROP_VALUE_MAX+4];    int ret = snprintf(ctl_name, sizeof(ctl_name), "ctl.%s", name);    if (ret < 0 || (size_t) ret >= sizeof(ctl_name))        return 0;    return check_mac_perms(ctl_name, sctx);}


static int check_mac_perms(const char *name, char *sctx){    if (is_selinux_enabled() <= 0)        return 1;    char *tctx = NULL;    const char *class = "property_service";    const char *perm = "set";    int result = 0;    if (!sctx)        goto err;    if (!sehandle_prop)        goto err;    if (selabel_lookup(sehandle_prop, &tctx, name, 1) != 0)        goto err;    if (selinux_check_access(sctx, tctx, class, perm, name) == 0)        result = 1;    freecon(tctx); err:    return result;}


如果不是"ctl."开头的property name的话,走这个flow来检测permission
static int check_perms(const char *name, unsigned int uid, unsigned int gid, char *sctx){    int i;    unsigned int app_id;    if(!strncmp(name, "ro.", 3))        name +=3;    if (uid == 0)        return check_mac_perms(name, sctx);    app_id = multiuser_get_app_id(uid);    if (app_id == AID_BLUETOOTH) {        uid = app_id;    }                                                                                                                                      for (i = 0; property_perms[i].prefix; i++) {        if (strncmp(property_perms[i].prefix, name,                    strlen(property_perms[i].prefix)) == 0) {            if ((uid && property_perms[i].uid == uid) ||                (gid && property_perms[i].gid == gid)) {                return check_mac_perms(name, sctx);            }        }    }    return 0;}



一系列检查完毕之后就需要去handle对应的msg了,具体的流程如下:
system/core/init/init.c
void handle_control_message(const char *msg, const char *arg){    if (!strcmp(msg,"start")) {        msg_start(arg);                                                                                                                } else if (!strcmp(msg,"stop")) {        msg_stop(arg);    } else if (!strcmp(msg,"restart")) {        msg_restart(arg);    } else {        ERROR("unknown control msg '%s'\n", msg);    }}


这里只说ctl.start的流程,其他的应该差不多
static void msg_start(const char *name){    struct service *svc = NULL;    char *tmp = NULL;    char *args = NULL;    if (!strchr(name, ':'))        svc = service_find_by_name(name);    else {        tmp = strdup(name);        if (tmp) {            args = strchr(tmp, ':');            *args = '\0';            args++;            svc = service_find_by_name(tmp);        }    }    if (svc) {        service_start(svc, args);    } else {        ERROR("no such service '%s'\n", name);    }    if (tmp)        free(tmp);}


可以看到ctl.start去起一个service,具体的流程如下:
void service_start(struct service *svc, const char *dynamic_args){    struct stat s;    pid_t pid;    int needs_console;    int n;    char *scon = NULL;    int rc;        /* starting a service removes it from the disabled or reset         * state and immediately takes it out of the restarting         * state if it was in there         */    svc->flags &= (~(SVC_DISABLED|SVC_RESTARTING|SVC_RESET|SVC_RESTART));    svc->time_started = 0;        /* running processes require no additional work -- if         * they're in the process of exiting, we've ensured         * that they will immediately restart on exit, unless         * they are ONESHOT         */    if (svc->flags & SVC_RUNNING) {        return;    }    needs_console = (svc->flags & SVC_CONSOLE) ? 1 : 0;    if (needs_console && (!have_console)) {        ERROR("service '%s' requires console\n", svc->name);                                                                               svc->flags |= SVC_DISABLED;        return;    }    if (stat(svc->args[0], &s) != 0) {        ERROR("cannot find '%s', disabling '%s'\n", svc->args[0], svc->name);        svc->flags |= SVC_DISABLED;        return;    }    if ((!(svc->flags & SVC_ONESHOT)) && dynamic_args) {        ERROR("service '%s' must be one-shot to use dynamic args, disabling\n",               svc->args[0]);        svc->flags |= SVC_DISABLED;        return;    }    if (is_selinux_enabled() > 0) {        if (svc->seclabel) {            scon = strdup(svc->seclabel);            if (!scon) {                ERROR("Out of memory while starting '%s'\n", svc->name);                return;            }        } else {            char *mycon = NULL, *fcon = NULL;            INFO("computing context for service '%s'\n", svc->args[0]);            rc = getcon(&mycon);            if (rc < 0) {                ERROR("could not get context while starting '%s'\n", svc->name);                return;            }            rc = getfilecon(svc->args[0], &fcon);            if (rc < 0) {                ERROR("could not get context while starting '%s'\n", svc->name);                freecon(mycon);                return;            }            rc = security_compute_create(mycon, fcon, string_to_security_class("process"), &scon);            freecon(mycon);            freecon(fcon);            if (rc < 0) {                ERROR("could not get context while starting '%s'\n", svc->name);                return;            }        }    }    NOTICE("starting '%s'\n", svc->name);    pid = fork();    if (pid == 0) {        struct socketinfo *si;        struct svcenvinfo *ei;        char tmp[32];        int fd, sz;        umask(077);        if (properties_inited()) {            get_property_workspace(&fd, &sz);            sprintf(tmp, "%d,%d", dup(fd), sz);            add_environment("ANDROID_PROPERTY_WORKSPACE", tmp);        }        for (ei = svc->envvars; ei; ei = ei->next)            add_environment(ei->name, ei->value);        setsockcreatecon(scon);        for (si = svc->sockets; si; si = si->next) {            int socket_type = (                    !strcmp(si->type, "stream") ? SOCK_STREAM :                        (!strcmp(si->type, "dgram") ? SOCK_DGRAM : SOCK_SEQPACKET));            int s = create_socket(si->name, socket_type,                                  si->perm, si->uid, si->gid);            if (s >= 0) {                publish_socket(si->name, s);            }        }        freecon(scon);        scon = NULL;        setsockcreatecon(NULL);        if (svc->ioprio_class != IoSchedClass_NONE) {            if (android_set_ioprio(getpid(), svc->ioprio_class, svc->ioprio_pri)) {                ERROR("Failed to set pid %d ioprio = %d,%d: %s\n",                      getpid(), svc->ioprio_class, svc->ioprio_pri, strerror(errno));            }        }        if (needs_console) {            setsid();            open_console();        } else {            zap_stdio();        }#if 0        for (n = 0; svc->args[n]; n++) {            INFO("args[%d] = '%s'\n", n, svc->args[n]);        }        for (n = 0; ENV[n]; n++) {            INFO("env[%d] = '%s'\n", n, ENV[n]);        }#endif        setpgid(0, getpid());    /* as requested, set our gid, supplemental gids, and uid */        if (svc->gid) {            if (setgid(svc->gid) != 0) {                ERROR("setgid failed: %s\n", strerror(errno));                _exit(127);            }        }        if (svc->nr_supp_gids) {            if (setgroups(svc->nr_supp_gids, svc->supp_gids) != 0) {                ERROR("setgroups failed: %s\n", strerror(errno));                _exit(127);            }        }        if (svc->uid) {            if (setuid(svc->uid) != 0) {                ERROR("setuid failed: %s\n", strerror(errno));                _exit(127);            }        }        if (svc->seclabel) {            if (is_selinux_enabled() > 0 && setexeccon(svc->seclabel) < 0) {                ERROR("cannot setexeccon('%s'): %s\n", svc->seclabel, strerror(errno));                _exit(127);            }        }        if (!dynamic_args) {            if (execve(svc->args[0], (char**) svc->args, (char**) ENV) < 0) {                ERROR("cannot execve('%s'): %s\n", svc->args[0], strerror(errno));            }        } else {            char *arg_ptrs[INIT_PARSER_MAXARGS+1];            int arg_idx = svc->nargs;            char *tmp = strdup(dynamic_args);            char *next = tmp;            char *bword;            /* Copy the static arguments */            memcpy(arg_ptrs, svc->args, (svc->nargs * sizeof(char *)));            while((bword = strsep(&next, " "))) {                arg_ptrs[arg_idx++] = bword;                if (arg_idx == INIT_PARSER_MAXARGS)                    break;            }            arg_ptrs[arg_idx] = '\0';            execve(svc->args[0], (char**) arg_ptrs, (char**) ENV);        }        _exit(127);    }    freecon(scon);    if (pid < 0) {        ERROR("failed to start '%s'\n", svc->name);        svc->pid = 0;        return;    }    svc->time_started = gettime();    svc->pid = pid;    svc->flags |= SVC_RUNNING;    if (properties_inited())        notify_service_state(svc->name, "running");}


上面的code的确很冗长,但是请把注意力放在fork+execve组合上,这对组合的出现也就是说明通过service来启动一个process的最终目的达到了,在启动完service之后别忘记设置service的运行状态,具体流程如下:
void notify_service_state(const char *name, const char *state)                                                                     {    char pname[PROP_NAME_MAX];    int len = strlen(name);    if ((len + 10) > PROP_NAME_MAX)        return;    snprintf(pname, sizeof(pname), "init.svc.%s", name);    property_set(pname, state);}




上面只说到了socket收到以"ctl."开头的property name的设置的flow,其实这种用法主要是我们service来起process,如果是非“ctl.”开头的property name呢?这个才是我们用key=value pair对来设置property的主要用法,关于property_set的具体flow有两种


方法一:包含libcutils里面的properties.h头文件,使用里面的property_set方法,这个是我们最常用的方法,但是这个最终还是会跑到方法二

方法二:使用__system_property_find+__system_property_update(__system_property_add)的组合方法把具体的property设置到具体的mmap所对应的共享内存中,这个才是最终的方法


因为方法一有包含方法二,所以我们先从方法一开始讲:
libcutils里面关于property_set的具体实现如下:
system/core/libcutils/properties.c
int property_set(const char *key, const char *value){    return __system_property_set(key, value);}

其实还是会跑到bionic里面的__system_property_set,这里有看到prop_msg的类型,这个前面用sizeof(prop_msg)来大致检测socket收到的msg是否合法,另外msg.cmd的值是PROP_MSG_SETPROP,这个也是property_service.c的handle_property_set_fd里面要检测的哈
/bionic/libc/bionic/system_properties.c
int __system_property_set(const char *key, const char *value)                                                                     {    int err;    prop_msg msg;    if(key == 0) return -1;    if(value == 0) value = "";    if(strlen(key) >= PROP_NAME_MAX) return -1;    if(strlen(value) >= PROP_VALUE_MAX) return -1;    memset(&msg, 0, sizeof msg);    msg.cmd = PROP_MSG_SETPROP;    strlcpy(msg.name, key, sizeof msg.name);    strlcpy(msg.value, value, sizeof msg.value);    err = send_prop_msg(&msg);    if(err < 0) {        return err;    }    return 0;}


在发送msg之前,我们先确定一下要发送给哪个socket:
cheny.le@cheny-desktop:~/kitkat2_git/bionic$ grep property_service_socket * -nrlibc/bionic/system_properties.c:110:static const char property_service_socket[] = "/dev/socket/" PROP_SERVICE_NAME;cheny.le@cheny-desktop:~/kitkat2_git/bionic$ grep PROP_SERVICE_NAME * -nrlibc/include/sys/_system_properties.h:43:#define PROP_SERVICE_NAME "property_service"


这个连接起来就是/dev/socket/property_service,这个就是之前start_property_service所创建的socket哈,原来bionic的system_properties.c里面的__system_property_set不是具体设置property的地方,property的设置接下来会跑到property_service.c里面

static int send_prop_msg(prop_msg *msg){    struct pollfd pollfds[1];    struct sockaddr_un addr;    socklen_t alen;    size_t namelen;    int s;    int r;    int result = -1;                                                                                                                                      s = socket(AF_LOCAL, SOCK_STREAM, 0);    if(s < 0) {        return result;    }    memset(&addr, 0, sizeof(addr));    namelen = strlen(property_service_socket);    strlcpy(addr.sun_path, property_service_socket, sizeof addr.sun_path);    addr.sun_family = AF_LOCAL;    alen = namelen + offsetof(struct sockaddr_un, sun_path) + 1;    if(TEMP_FAILURE_RETRY(connect(s, (struct sockaddr *) &addr, alen)) < 0) {        close(s);        return result;    }    if(r == sizeof(prop_msg)) {        // We successfully wrote to the property server but now we        // wait for the property server to finish its work.  It        // acknowledges its completion by closing the socket so we        // poll here (on nothing), waiting for the socket to close.        // If you 'adb shell setprop foo bar' you'll see the POLLHUP        // once the socket closes.  Out of paranoia we cap our poll        // at 250 ms.        pollfds[0].fd = s;        pollfds[0].events = 0;        r = TEMP_FAILURE_RETRY(poll(pollfds, 1, 250 /* ms */));        if (r == 1 && (pollfds[0].revents & POLLHUP) != 0) {            result = 0;        } else {            // Ignore the timeout and treat it like a success anyway.            // The init process is single-threaded and its property            // service is sometimes slow to respond (perhaps it's off            // starting a child process or something) and thus this            // times out and the caller thinks it failed, even though            // it's still getting around to it.  So we fake it here,            // mostly for ctl.* properties, but we do try and wait 250            // ms so callers who do read-after-write can reliably see            // what they've written.  Most of the time.            // TODO: fix the system properties design.            result = 0;        }    }       close(s);    return result;}


property_service.c收到这个msg之后,会根据msg.name和msg.value来设置具体的property,在这里需要说明一下,如果根据name能够找到对应的prop_info信息,那么就去update对应的value值,如果找不到对应的prop_info信息,那么就去add一个prop_info,具体的flow如下:
int property_set(const char *name, const char *value){    prop_info *pi;    int ret;    size_t namelen = strlen(name);    size_t valuelen = strlen(value);    if (!is_legal_property_name(name, namelen)) return -1;    if (valuelen >= PROP_VALUE_MAX) return -1;    pi = (prop_info*) __system_property_find(name);    if(pi != 0) {        /* ro.* properties may NEVER be modified once set */        if(!strncmp(name, "ro.", 3)) return -1;        __system_property_update(pi, value, valuelen);    } else {        ret = __system_property_add(name, namelen, value, valuelen);        if (ret < 0) {            ERROR("Failed to set '%s'='%s'\n", name, value);            return ret;        }    }    /* If name starts with "net." treat as a DNS property. */    if (strncmp("net.", name, strlen("net.")) == 0)  {        if (strcmp("net.change", name) == 0) {            return 0;        }       /*        * The 'net.change' property is a special property used track when any        * 'net.*' property name is updated. It is _ONLY_ updated here. Its value        * contains the last updated 'net.*' property.        */        property_set("net.change", name);    } else if (persistent_properties_loaded &&            strncmp("persist.", name, strlen("persist.")) == 0) {        /*         * Don't write properties to disk until after we have read all default properties         * to prevent them from being overwritten by default values.         */        write_persistent_property(name, value);    } else if (strcmp("selinux.reload_policy", name) == 0 &&               strcmp("1", value) == 0) {        selinux_reload_policy();    }    property_changed(name, value);    return 0;}

const prop_info *__system_property_find(const char *name){    if (__predict_false(compat_mode)) {        return __system_property_find_compat(name);    }    return find_property(root_node(), name, strlen(name), NULL, 0, false);}


到了这里有必要说一下property在共享内存里面的具体结构:
/*
 * Properties are stored in a hybrid trie/binary tree structure.
 * Each property's name is delimited at '.' characters, and the tokens are put
 * into a trie structure.  Siblings at each level of the trie are stored in a
 * binary tree.  For instance, "ro.secure"="1" could be stored as follows:
 *
 * +-----+   children    +----+   children    +--------+
 * |     |-------------->| ro |-------------->| secure |
 * +-----+               +----+               +--------+
 *                       /    \                /   |
 *                 left /      \ right   left /    |  prop   +===========+
 *                     v        v            v     +-------->| ro.secure |
 *                  +-----+   +-----+     +-----+            +-----------+
 *                  | net |   | sys |     | com |            |     1     |
 *                  +-----+   +-----+     +-----+            +===========+
 */
可以看到ro.secure=1在内存里面的组成图如上,这里我有一个疑问,就是net节点应该在ro节点的right子树上,疑问的解释待会给出


关于这个find_property,其实他是在遍历property树,具体的内容我大致解释一下:
首先以.做分隔符,解释出property name里面的第一个元素,一般第一个元素是ro,net,sys之类的,然后根据property name中是否还有.作为是否还需要继续循环的条件,也就是说没有.的情况下就是最后一轮的find了,接下来计算出解析出来的元素的长度substr_size,这个size是要跟后续所遍历的节点的name length做对比的,接下来根据root的childred来到第一个节点,根据图来看应该是ro节点,然后这里会调用find_prop_bt,find_prop_bt会找到name对应的prop_bt,然后根据want_subtree来确认是否还需要find,如果不需要的话就停止find,如果这个prop是存在的就返回,如果这个prop不存在的话,就根据alloc_if_needed参数来确定是否需要创建,如果不需要创建就返回NULL
static const prop_info *find_property(prop_bt *trie, const char *name,        uint8_t namelen, const char *value, uint8_t valuelen,        bool alloc_if_needed){    const char *remaining_name = name;    while (true) {        char *sep = strchr(remaining_name, '.');        bool want_subtree = (sep != NULL);        uint8_t substr_size;        prop_bt *root;                                                                                                                                           if (want_subtree) {            substr_size = sep - remaining_name;        } else {            substr_size = strlen(remaining_name);        }        if (!substr_size)            return NULL;        if (trie->children) {            root = to_prop_obj(trie->children);        } else if (alloc_if_needed) {            root = new_prop_bt(remaining_name, substr_size, &trie->children);        } else {            root = NULL;        }        if (!root)            return NULL;        trie = find_prop_bt(root, remaining_name, substr_size, alloc_if_needed);        if (!trie)            return NULL;        if (!want_subtree)            break;        remaining_name = sep + 1;    }    if (trie->prop) {        return to_prop_obj(trie->prop);    } else if (alloc_if_needed) {        return new_prop_info(name, namelen, value, valuelen, &trie->prop);    } else {        return NULL;    }}


接下来追查一下find_prop_bt的flow,我们先看一下return的情况,可以看到要么return bt,要么return NULL,return bt的情况是cmp_prop_name的返回值ret是0,return NULL的原因是ret小于0的时候没有left节点且不需要alloc,或者是ret大于0的时候没有没有right节点且不需要alloc,否则ret小于0的时候bt跳到left节点进行下一次find,或者ret大于0的时候跳到right节点进行下一次find
static prop_bt *find_prop_bt(prop_bt *bt, const char *name, uint8_t namelen,        bool alloc_if_needed){    while (true) {        int ret;        if (!bt)            return bt;        ret = cmp_prop_name(name, namelen, bt->name, bt->namelen);        if (ret == 0) {            return bt;        } else if (ret < 0) {            if (bt->left) {                bt = to_prop_obj(bt->left);            } else {                if (!alloc_if_needed)                   return NULL;                bt = new_prop_bt(name, namelen, &bt->left);            }        } else {            if (bt->right) {                bt = to_prop_obj(bt->right);            } else {                if (!alloc_if_needed)                   return NULL;                bt = new_prop_bt(name, namelen, &bt->right);            }        }    }}



关于cmp_prop_name的flow如下:
我前面有说到,我对android原生提供的property结构图有一些疑问,在于property在创建的时候,ro节点最先创建,然后在创建net节点的时候,substr_size是3,one是net,到这里就是one_len是3,two_len(bt->namelen)是2,two(bt->name)是ro,这里可以看到cmp_prop_name的结果是大于0的,也就是说当时在创建net property的时候也应该是在ro的right节点,而不是left,这里的分析可能有问题,麻烦各位网友帮忙double check一下
</pre><pre name="code" class="cpp">static int cmp_prop_name(const char *one, uint8_t one_len, const char *two,                                                               uint8_t two_len){    if (one_len < two_len)        return -1;    else if (one_len > two_len)        return 1;    else        return strncmp(one, two, one_len);}


这里的__system_property_area__就是前面init的时候mmap所创建的那段共享内存,这个是遍历property结构的基础
static void *to_prop_obj(prop_off_t off)                                                                                           {    if (off > pa_data_size)        return NULL;    return __system_property_area__->data + off;}


前面的内容是name在property结构中是存在的,那么property_set就会直接设置value到对应的节点,如果name在property结构中是不存在的,就需要创建对应的property结构,具体的flow如下:
因为__system_property_area__是共享内存的起始地址,那么__system_property_area__加上一定的offset就可以得到new出来的prop obj的指针
static void *new_prop_obj(size_t size, prop_off_t *off){    prop_area *pa = __system_property_area__;    size = ALIGN(size, sizeof(uint32_t));    if (pa->bytes_used + size > pa_data_size)        return NULL;                                                                                                                   *off = pa->bytes_used;    __system_property_area__->bytes_used += size;    return __system_property_area__->data + *off;}




new出prop obj之后根据name去设置bt->name的值,具体value的值后续会给出设置的方式
static prop_bt *new_prop_bt(const char *name, uint8_t namelen, prop_off_t *off){    prop_off_t off_tmp;    prop_bt *bt = new_prop_obj(sizeof(prop_bt) + namelen + 1, &off_tmp);    if (bt) {        memcpy(bt->name, name, namelen);        bt->name[namelen] = '\0';        bt->namelen = namelen;        ANDROID_MEMBAR_FULL();        *off = off_tmp;    }    return bt;}


到这里就根据prop name找到了对应prop info的节点,这个是后续property_set来设置具体的value项的基础
接下来跟一下具体set value的flow
int __system_property_update(prop_info *pi, const char *value, unsigned int len)                                                   {    prop_area *pa = __system_property_area__;    if (len >= PROP_VALUE_MAX)        return -1;    pi->serial = pi->serial | 1;    ANDROID_MEMBAR_FULL();    memcpy(pi->value, value, len + 1);    ANDROID_MEMBAR_FULL();    pi->serial = (len << 24) | ((pi->serial + 1) & 0xffffff);    __futex_wake(&pi->serial, INT32_MAX);    pa->serial++;    __futex_wake(&pa->serial, INT32_MAX);    return 0;}
这里我们可以看到memcpy(pi->value, value, len + 1);,这就是把用户的value设置到了prop info这个节点里面了


如果对应name的prop info是不存在的呢?这里就需要使用__system_property_add来增加对应的prop info信息了
int __system_property_add(const char *name, unsigned int namelen,            const char *value, unsigned int valuelen){    prop_area *pa = __system_property_area__;    const prop_info *pi;    if (namelen >= PROP_NAME_MAX)        return -1;    if (valuelen >= PROP_VALUE_MAX)        return -1;    if (namelen < 1)        return -1;    pi = find_property(root_node(), name, namelen, value, valuelen, true);    if (!pi)        return -1;    pa->serial++;    __futex_wake(&pa->serial, INT32_MAX);    return 0;}


同样会走find_property的flow,但是跟单纯的find有一些不一样的是最后一个参数是true,也就是说拥有创建prop info的权限,到这里我们就把property_set的整个flow(查找name之后set和直接创建两种情况)走完了


property_set的flow走完之后我们来走一下property_get的flow
int __system_property_get(const char *name, char *value)                                                                           {    const prop_info *pi = __system_property_find(name);    if(pi != 0) {        return __system_property_read(pi, 0, value);    } else {        value[0] = 0;        return 0;    }}



拿到prop info之后根据prop info读出value的值
int __system_property_read(const prop_info *pi, char *name, char *value)                                                           {    unsigned serial, len;    if (__predict_false(compat_mode)) {        return __system_property_read_compat(pi, name, value);    }    for(;;) {        serial = pi->serial;        while(SERIAL_DIRTY(serial)) {            __futex_wait((volatile void *)&pi->serial, serial, 0);            serial = pi->serial;        }        len = SERIAL_VALUE_LEN(serial);        memcpy(value, pi->value, len + 1);        ANDROID_MEMBAR_FULL();        if(serial == pi->serial) {            if(name != 0) {                strcpy(name, pi->name);            }            return len;        }    }}



到此为止property的整个flow就走完了,可以发现property的最终存储实体是在/dev/__properties__文件mmap对应的共享内存中,由于这块内存是共享的,所以其他进程也可以访问,另外指向这块内存的指针是一个全局变量,所以可以直接拿到指向包含property信息的指针


一般property_set的流程是根据name拿到prop info,prop info之所以能拿到是因为__system_property_area__全局变量的存在,这个全局变量可以遍历property信息的节点,所以也就找到包含对应name的prop info,如果这个prop info不存在那么就看情况决定是否创建,拿到prop info之后就可以用property_set所传递的参数来填充prop info的value字段,这个是在__system_property_update里面做的,前面有讲到的


property_get就简单了,用跟propert_set相同的方式去遍历property的节点,拿到包含对应name的prop info,然后读出prop info的value字段返回给上层


这里面最后一个比较重要的地方就是prop info在共享内存中的结构,这个是前面property遍历的规则,大致如前面图里面所展示的,大家可以根据find_prop_bt函数大致理清楚节点的left和right是怎么确定的,节点的children则是property的下一个元素,每个元素之间用.来隔开,到此为止android property的大致内容就讲完了,谢谢!
0 0
原创粉丝点击