智能机器人以及智能控制算法综述小论文

来源:互联网 发布:什么软件合成视频 编辑:程序博客网 时间:2024/04/29 21:24


 

一、遗传算法

1.介绍:遗传算法(Genetic Algorithm, GA)是近几年发展起来的一种崭新的全局优化算法。1962 年霍兰德 (Holland) 教授首次提出了 GA 算法的思想,它借用了仿真生物遗传学和自然选择机理,通过自然选择、遗传、变异等作用机制,实现各个个体的适应性的提高。从某种程度上说遗传算法是对生物进化过程进行的数学方式仿真

2.算法操作:

a.选择:选择是另一种意义上的复制,从群体中按照个体的适应度函数选择出比较适应环境的个体。最常用的实现方法是转盘法,令令Σ fi 表示群体的适应度值之总和,fi 表示种群中第 个染色体的适应度值,它被选择的概率正好为其适应度值所占份额 fi /Σ fi

b.交叉:交叉算子将被选中的两个个体的基因链按一定概率 pc 进行交叉,从而生成两个新的个体,交叉位置 pc 是随机的。其中 Pc 是一个系统参数。根据问题的不同,交叉又为了单点交叉算子(Single Point Crossover)、双点交叉算子(Two Point Crossover)、均匀交叉算子 (Uniform Crossover),在此我们只讨论单点交叉的情况。

c.变异:这是在选中的个体中,将新个体的基因链的各位按概率 pm 进行异向转化,最简单方式是改变串上某个位置数值。对二进制编码来说将 与 互换:变异为 1变异为 0

d.精英主义:仅仅从产生的子代中选择基因去构造新的种群可能会丢失掉上一代种群中的很多信息。也就是说当利用交叉和变异产生新的一代时,我们有很大的可能把在某个中间步骤中得到的最优解丢失。在此我们使用精英主义(Elitism)方法,在每一次产生新的一代时,我们首先把当前最优解原封不动的复制到新的一代中,其他步骤不变。这样任何时刻产生的一个最优解都可以存活到遗传算法结束。

3.遗传步骤:对待解决问题进行编码 我们将问题结构变换为位串形式编码表示的过程叫编码;而相反将位串形式编码表示变换为原问题结构的过程叫译码。

随机初始化群体 P(0)=(p1, p2, … pn)

计算群体上每个个体的适应度值 (Fitness)

评估适应度 对当前群体 P(t) 中每个个体 Pi 计算其适应度 F(Pi),适应度表示了该个体的性能好坏

按由个体适应度值所决定的某个规则应用选择算子产生中间代 Pr(t)

依照 Pc 选择个体进行交叉操作

仿照 Pm 对繁殖个体进行变异操作

没有满足某种停止条件,则转第 步,否则进入 9

输出种群中适应度值最优的个体

程序的停止条件最简单的有如下二种:完成了预先给定的进化代数则停止;种群中的最优个体在连续若干代没有改进或平均适应度在连续若干代基本没有改进时停止。

简单遗传算法框图

二、蚁群算法:

1.介绍:蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。针对PID控制器参数优化设计问题(这个不懂),将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

2.原理:设想,如果我们要为蚂蚁设计一个工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃。这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。

然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样,在蚁群这个集体里,复杂性的行为就会凸现出来。

3.规则:下面就是实现如此复杂性的七条简单规则:

1、范围:

蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内。

2、环境:

蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素。每个蚂蚁都仅仅能感知它范围内的环境信息。环境以一定的速率让信息素消失。

3、觅食规则:

在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁多会以小概率犯错误,从而并不是往信息素最多的点移动。蚂蚁找窝的规则和上面一样,只不过它对窝的信息素做出反应,而对食物信息素没反应。

4、移动规则:

每只蚂蚁都朝向信息素最多的方向移,并且,当周围没有信息素指引的时候,蚂蚁会按照自己原来运动的方向惯性的运动下去,并且,在运动的方向有一个随机的小的扰动。为了防止蚂蚁原地转圈,它会记住最近刚走过了哪些点,如果发现要走的下一点已经在最近走过了,它就会尽量避开。

5、避障规则:

如果蚂蚁要移动的方向有障碍物挡住,它会随机的选择另一个方向,并且有信息素指引的话,它会按照觅食的规则行为。

7、播撒信息素规则:

每只蚂蚁在刚找到食物或者窝的时候撒发的信息素最多,并随着它走远的距离,播撒的信息素越来越少。

下面的程序开始运行之后,蚂蚁们开始从窝里出动了,寻找食物;他们会顺着屏幕爬满整个画面,直到找到食物再返回窝。

其中,‘F’点表示食物,‘H’表示窝,白色块表示障碍物,‘+’就是蚂蚁了。

参数说明:

最大信息素:蚂蚁在一开始拥有的信息素总量,越大表示程序在较长一段时间能够存在信息素。信息素消减的速度:随着时间的流逝,已经存在于世界上的信息素会消减,这个数值越大,那么消减的越快。

错误概率表示这个蚂蚁不往信息素最大的区域走的概率,越大则表示这个蚂蚁越有创新性。

速度半径表示蚂蚁一次能走的最大长度,也表示这个蚂蚁的感知范围。

记忆能力表示蚂蚁能记住多少个刚刚走过点的坐标,这个值避免了蚂蚁在本地打转,停滞不前。而这个值越大那么整个系统运行速度就慢,越小则蚂蚁越容易原地转圈。

三、禁忌搜索:

1.介绍:禁忌搜索(Tabu SearchTaboo Search,简称TS)的思想最早由Glover(1986)提出,它是对局部领域搜索的一种扩展,是一种全局逐步寻优算法,是对人类智力过程的一种模拟。TS算法通过引入一个灵活的存储结构和相应的禁忌准则来避免迂回搜索,并通过藐视准则来赦免一些被禁忌的优良状态,进而保证多样化的有效探索以最终实现全局优化。相对于模拟退火遗传算法TS是又一种搜索特点不同的 meta-heuristic算法。

2.局部领域搜索:局部领域搜索是基于贪婪思想持续地在当前解的领域中进行搜索,虽然算法通用易实现,且容易理解,但其搜索性能完全依赖于领域结构和初解,尤其窥陷入局部极小而无法保证全局优化性。针对局部领域搜索,为了实现全局优化,可尝试的途径有:以可控性概率接受劣解来逃逸局部极小,如模拟退火算法;扩大领域搜索结构,如TSP2opt扩展到k-opt;多点并行搜索,如进化计算;变结构领域搜索( Mladenovic et al,1997);另外,就是采用TS的禁忌策略尽量避免迂回搜索,它是一种确定性的局部极小突跳策略。

禁忌搜索是人工智能的一种体现,是局部领域搜索的一种扩展。禁忌搜索最重要的思想是标记对应已搜索的局部最优解的一些对象,并在进一步的迭代搜索中尽量避开这些对象(而不是绝对禁止循环),从而保证对不同的有效搜索途径的探索。禁忌搜索涉及到临域(neighborhood)、禁忌表(tabu list)、禁忌长度(tabu length)、候选解(candidate)、藐视准则(aspiration criterion)等概念;

3.禁域搜索实例:组合优化是TS算法应用最多的领域。置换问题,如TSP、调度问题等,是一大批组合优化问题的典型代表,在此用它来解释简单的禁忌搜索算法的思想和操作。对于 n元素的置换问题,其所有排列状态数为n!,当n较大时搜索空间的大小将是天文数字,而禁忌搜索则希望仅通过探索少数解来得到满意的优化解。

首先,我们对置换问题定义一种邻域搜索结构,如互换操作(SWAP),即随机交换两个点的位置,则每个状态的邻域解有Cn2=nn1/2个。称从一个状态转移到其邻域中的另一个状态为一次移动(move),显然每次移动将导致适配值(反比于目标函数值)的变化。其次,我们采用一个存储结构来区分移动的属性,即是否为禁忌“对象”在以下示例中:考虑7元素的置换问题,并用每一状态的相应21个邻域解中最优的5次移动(对应最佳的5个适配值)作为候选解;为一定程度上防止迂回搜索,每个被采纳的移动在禁忌表中将滞留3步(即禁忌长度),即将移动在以下连续3步搜索中将被视为禁忌对象;需要指出的是,由于当前的禁忌对象对应状态的适配值可能很好,因此在算法中设置判断,若禁忌对象对应的适配值优于“ best so far”状态,则无视其禁忌属性而仍采纳其为当前选择,也就是通常所说的藐视准则(或称特赦准则)。

可见,简单的禁忌搜索是在领域搜索的基础上,通过设置禁忌表来禁忌一些已经历的操作,并利用藐视准则来奖励一些优良状态,其中领域结构、候选解、禁忌长度、禁忌对象、藐视准则、终止准则等是影响禁忌搜索算法性能的关键。需要指出的是:

1)首先,由于TS是局部领域搜索的一种扩充,因此领域结构的设计很关键,它决定了当前解的领域解的产生形式和数目,以及各个解之间的关系。

2)其次,出于改善算法的优化时间性能的考虑,若领域结构决定了大量的领域解(尤其对大规模问题,如TSPSWAP操作将产生Cn2个领域解),则可以仅尝试部分互换的结果,而候选解也仅取其中的少量最佳状态。

3)禁忌长度是一个很重要的关键参数,它决定禁忌对象的任期,其大小直接进而影响整个算法的搜索进程和行为。同时,以上示例中,禁忌表中禁忌对象的替换是采用FIFO方式(不考虑藐视准则的作用),当然也可以采用其他方式,甚至是动态自适应的方式。

4)藐视准则的设置是算法避免遗失优良状态,激励对优良状态的局部搜索,进而实现全局优化的关键步骤。

5)对于非禁忌候选状态,算法无视它与当前状态的适配值的优劣关系,仅考虑它们中间的最佳状态为下一步决策,如此可实现对局部极小的突跳(是一种确定性策略)。

6)为了使算法具有优良的优化性能或时间性能,必须设置一个合理的终止准则来结束整个搜索过程。

此外,在许多场合禁忌对象的被禁次数(frequency)也被用于指导搜索,以取得更大的搜索空间。禁忌次数越高,通常可认为出现循环搜索的概率越大。

四、模拟退火:

1.介绍:模拟退火(Simulated Annealing,简称SA)是一种通用概率算法,用来在一个大的搜寻空间内找寻命题的最优解。

2.原理:模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却。加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。

根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,kBoltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解x和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→ 接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S

3.步骤:

第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。

第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。

第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则:若Δt<0则接受S′作为新的当前解S,否则以概率exp(-Δt/T)接受S′作为新的当前解S

第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。

模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。

(随机)选择一个x的初始值,以及一个T的初始值T>0,当T>Tmin,执行以下步骤

1)产生一个x的邻近点y(邻近点的确切定义接下来讨论)。

2)如果H(y)3)否则计算Py=exp(-(H(y)-H(x))/T)。如果Py>=R,那么用y代替x,其中R是在01之间均匀分布的随机数。

4)略微降低T的值,返回第1步。

五、贪心算法:

1.介绍:贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解。

2.原理:

1贪心选择性质

所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。

2最优子结构性质

当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。

贪心算法当然也有正确的时候。求最小生成树的Prim算法Kruskal算法都是漂亮的贪心算法。

贪心法的应用算法有Dijkstra的单源最短路径和Chvatal的贪心集合覆盖启发式

所以需要说明的是,贪心算法可以与随机化算法一起使用,具体的例子就不再多举了。(因为这一类算法普及性不高,而且技术含量是非常高的,需要通过一些反例确定随机的对象是什么,随机程度如何,但也是不能保证完全正确,只能是极大的几率正确)

 

PS:还有很多算法:搜索算法、动态规划算法等。而且这些算法我本人也不是很好的理解,因为并没有去实现或者阅读算法的代码本身,只是看了一些他们的介绍。其实对于人工智能也好,智能机器人也好,原先认为以现在的硬件条件和二进制的方式是没法实现的,比如我一直对于“灵感”的实现表示怀疑。如何产生一个随机的意识的问题,看了上面的算法,比如遗传算法和蚁群算法,感觉或许可以通过一种模拟的方式来实现?由于才疏学浅,目前还不是很了解,希望将来有机会多去了解一些吧。

 

0 0
原创粉丝点击