Model-View-Presenter Using The Smart Client Software Factory (Introduction To CAB/SCSF Part 25)

来源:互联网 发布:修改ip地址软件 编辑:程序博客网 时间:2024/05/20 05:57

Introduction

Part 23 and part 24 of this series of articles described the Model-View-Presenter pattern.

This article explains how the Smart Client Software Factory supports this pattern by generating appropriate classes.

Guidance Automation Packages in the Smart Client Software Factory

We saw how we could use the Smart Client Application Guidance Automation Package to set up a Smart Client Application in part 18. We can also set up a Model-View-Presenter pattern in a Smart Client application using another of the Guidance Automation Packages.

This will only work in an existing Smart Client Application.

Running the Model-View-Presenter Package

To use the Guidance Automation Package we right-click in Solution Explorer on a project or folder where we want to run the package. It is intended that we do this in the Views folder in a business module. On the right-click menu we select ‘Smart Client Factory/Add View (with presenter)’. We get a configuration screen that lets us name our view, and also lets us put the classes that get created into a folder. For the purposes of this example we name our view ‘Test’, and check the checkbox that says we do want to create a folder for the view.

When we click ‘Finish’ we get three classes and a TestView folder as below:

mvpsolutionexplorer.jpg

Classes Created

  1. TestView
    This is (obviously) our View class. It is intended that this contain the auto-generated code to display the View. As discussed in the previous articles any complex view logic will not go into this class, but will go into the Presenter.
  2. TestViewPresenter
    This is our Presenter class. As discussed in previous articles this should contain logic to deal with user events. It should also contain any complex view logic, and should directly update the View with the results of an view logic calculations. It has access to the View class via an interface.
  3. ITestView
    This is the interface that the View implements. The Presenter can only update the View through this interface.

Diagram

In terms of the diagrams shown in parts 23 and 24 this looks as below. Remember that we may or may not have arrows between the Model and the View depending on whether we are using the active View or passive View version of Model-View-Presenter:

mvpdiagram2.jpg

Where’s the Model?

The Guidance Automation package does not set up a Model class for us. As we have seen, the Model has no direct references to a View/Presenter pair (it raises events), and there may be multiple View/Presenter pairs for one Model. Further the Model would not usually be in the same folder, or even in the same component, as our View and Presenter.

For these reasons we are expected to set up our Model classes separately by hand.

Note that the Presenter (and the View as well if we are using the active View pattern) will have a direct reference to the Model. We will have to add these references manually.

Active and Passive View: a Quick Recap

Remember that in Model-View-Presenter the Presenter updates the View via an interface. We can set this up so only the Presenter is allowed to update the View. This is the ‘passive View’ pattern. We can also set this up so that the Presenter can update the View in complex cases, but the View can also update itself (in response to an event or user request) in simple cases. This is the ‘active View’ pattern.

Active and Passive View: Which Should We Use?

The pattern described in the SCSF documentation is the passive View: the documentation implies that all updates to the View should be done by the Presenter.

However there is nothing to stop us using the active View pattern with the classes generated by the Guidance Automation Package. We can add code to update the View wherever we like. In fact I would recommend using active View in simple cases: passive View should only be used where we are putting too much logic into the View class.

Should We Use Model-View-Presenter for Every Screen? A Personal View

Let me also reiterate a point made in part 24. It’s easy to get obsessive about the use of patterns and use them everywhere without thinking. My personal opinion is that we should only use the full Model-View-Presenter pattern where we have a complex screen that will benefit from the separation of the View and Presenter classes. For very basic screens the pattern is really too complex to give us benefit. In simple cases I think it is fine to put event handling and screen update logic directly behind the screen.

Note that I don’t think this applies to the use of the Model. We should always separate out the business logic from our screens into separate classes (this is what Martin Fowler calls ‘Separated Presentation’). However, we frequently have screens that don’t show any business logic or business data, so we may not need a Model class either.

For example an About screen that just shows the system name and version won’t need separate View and Presenter classes, and probably won’t need anything in a Model class either.

Equally a screen that shows a read-only grid of currencies used in a trading system probably doesn’t need separate View and Presenter classes. In this case the currencies themselves should be in a Model class so that other screens can access them.

Implementation Details: What We’d Expect

If we examine the diagram above, we expect the Presenter to have a data member with type of our ITestView interface that it will use to access the View. We expect the View to implement the ITestView interface to allow this. We further expect the View to have a direct reference to the Presenter class (a data member), which it will use to invoke code relating to user events. We’d probably expect both the View and the Presenter classes to be created the first time the View is needed.

Implementation Details: the Base Presenter Class

The actual details of the implementation of the Presenter are a little unusual.

If we look at the code generated by the Guidance Automation Package we see that the TestViewPresenter above has been given its core functionality by inheriting from an abstract Presenter<TView> class. Remember that the generic ‘TView’ simply lets us provide a type whenever we use the Presenter class. Here we inherit from Presenter, and provide the type when we inherit:

    public partial class TestViewPresenter : Presenter<ITestView>    {

This allows the base Presenter class to have a data member of type ITestView (which is what we expect), rather than it being directly in the TestViewPresenter class. Note that the base Presenter is in the Infrastructure.Interface project (which is one of the reasons why we have to use this pattern in a Smart Client application).

The base Presenter class exposes our ITestView data member publicly, contains a reference to our WorkItem, and has disposal code and a CloseView method. It also has virtual OnViewReady and OnViewSet methods. These get called when you’d expect from the name and let us respond at the appropriate times by overriding the methods in our TestViewPresenter class.

All the above functionality in the base Presenter class means that the derived TestViewPresenter class is basically empty when it is created. It is up to us to put logic in there to handle user events and complex view logic.

The TestView class is a normal user control. It implements ITestView and contains a reference to the TestViewPresenter as we’d expect. It also calls OnViewReady as appropriate (in the OnLoad event of the user control). Again other than this TestView is also basically empty.

Conclusion

This article has shown us how to set up Model-View-Presenter classes using the Smart Client Software Factory, and discussed some issues surrounding it.

0 0
原创粉丝点击