并发处理

来源:互联网 发布:数控铣简单图案编程 编辑:程序博客网 时间:2024/05/16 06:30

http://www.jb51.net/softjc/126050.html

http://blog.csdn.net/yanglilibaobao/article/details/1670026


理解思路

1.理解事务的ACID

2.数据库的锁的作用

3.什么叫死锁

4.4种并发问题,脏读,不可重复读,幻象读,丢失更新

5.通过事务隔离级别控制锁

6.死锁问题如何解决


并发控制是以事务(transaction)为单位进行的。

1.  并发控制的单位――事务

事务是数据库的逻辑工作单位,它是用户定义的一组操作序列。一个事务可以是一组SQL语句、一条SQL语句或整个程序。

事务的开始和结束都可以由用户显示的控制,如果用户没有显式地定义事务,则由数据库系统按缺省规定自动划分事务。

事务应该具有4种属性:原子性、一致性、隔离性和持久性。

(1)原子性

事务的原子性保证事务包含的一组更新操作是原子不可分的,也就是说这些操作是一个整体,对数据库而言全做或者全不做,不能部分的完成。这一性质即使在系统崩溃之后仍能得到保证,在系统崩溃之后将进行数据库恢复,用来恢复和撤销系统崩溃处于活动状态的事务对数据库的影响,从而保证事务的原子性。系统对磁盘上的任何实际数据的修改之前都会将修改操作信息本身的信息记录到磁盘上。当发生崩溃时,系统能根据这些操作记录当时该事务处于何种状态,以此确定是撤销该事务所做出的所有修改操作,还是将修改的操作重新执行。

(2)一致性

一致性要求事务执行完成后,将数据库从一个一致状态转变到另一个一致状态。它是一种以一致性规则为基础的逻辑属性,例如在转账的操作中,各账户金额必须平衡,这一条规则对于程序员而言是一个强制的规定,由此可见,一致性与原子性是密切相关的。事务的一致性属性要求事务在并发执行的情况下事务的一致性仍然满足。它在逻辑上不是独立的,它由事务的隔离性来表示。

(3) 隔离性

隔离性意味着一个事务的执行不能被其他事务干扰。即一个事务内部的操作及使用的数据对并发的其他事务是隔离的,并发执行的各个事务之间不能互相干扰。它要求即使有多个事务并发执行,看上去每个成功事务按串行调度执行一样。这一性质的另一种称法为可串行性,也就是说系统允许的任何交错操作调度等价于一个串行调度。串行调度的意思是每次调度一个事务,在一个事务的所有操作没有结束之前,另外的事务操作不能开始。由于性能原因,我们需要进行交错操作的调度,但我们也希望这些交错操作的调度的效果和某一个串行调度是一致的。 DM实现该机制是通过对事务的数据访问对象加适当的锁,从而排斥其他的事务对同一数据库对象的并发操作。

(4)持久性

系统提供的持久性保证要求一旦事务提交,那么对数据库所做的修改将是持久的,无论发生何种机器和系统故障都不应该对其有任何影响。例如,自动柜员机( ATM)在向客户支付一笔钱时,就不用担心丢失客户的取款记录。事务的持久性保证事务对数据库的影响是持久的,即使系统崩溃。正如在讲原子性时所提到的那样,系统通过做记录来提供这一保证。



并发操作带来的数据库不一致性可以分为四类:丢失或覆盖更新、脏读、不可重复读和幻像读

(1)       丢失或覆盖更新(lost update)

当两个或多个事务选择同一数据,并且基于最初选定的值更新该数据时,会发生丢失更新问题。每个事务都不知道其它事务的存在。最后的更新将重写由其它事务所做的更新,这将导致数据丢失。上面预定飞机票的例子就属于这种并发问题。事务1与事务2先后读入同一数据A=16,事务1执行A-1,并将结果A=15写回,事务2执行A-1,并将结果A=15写回。事务2提交的结果覆盖了事务1对数据库的修改,从而使事务1对数据库的修改丢失了

(2)    脏读
一个事务读取了另一个未提交的并行事务写的数据。当第二个事务选择其它事务正在更新的行时,会发生未确认的相关性问题。第二个事务正在读取的数据还没有确认并且可能由更新此行的事务所更改。换句话说,当事务1修改某一数据,并将其写回磁盘,事务2读取同一数据后,事务1由于某种原因被撤销,这时事务1已修改过的数据恢复原值,事务2读到的数据就与数据库中的数据不一致,是不正确的数据,称为脏读。
例如,在下图中,事务1将C值修改为200,事务2读到C为200,而事务1由于某种原因撤销,其修改作废,C恢复原值100,这时事务2读到的就是不正确的“脏“数据了。

(3)    不可重复读(nonrepeatable read)
一个事务重新读取前面读取过的数据,发现该数据已经被另一个已提交的事务修改过。即事务1读取某一数据后,事务2对其做了修改,当事务1再次读数据时,得到的与第一次不同的值。
例如,在下图中,事务1读取B=100进行运算,事务2读取同一数据B,对其进行修改后将B=200写回数据库。事务1为了对读取值校对重读B,B已为200,与第一次读取值不一致。

(4)    幻像读
如果一个事务在提交查询结果之前,另一个事务可以更改该结果,就会发生这种情况。这句话也可以这样解释,事务1按一定条件从数据库中读取某些数据记录后未提交查询结果,事务2删除了其中部分记录,事务1再次按相同条件读取数据时,发现某些记录神秘地消失了;或者事务1按一定条件从数据库中读取某些数据记录后未提交查询结果,事务2插入了一些记录,当事务1再次按相同条件读取数据时,发现多了一些记录。
产生上述四类数据不一致性的主要原因是并发操作破坏了事务的隔离性。并发控制就是要用正确的方式调度并发操作,使一个用户事务的执行不受其他事务的干扰,从而避免造成数据的不一致性。


SQL-92的四种隔离级别如下所示,DM支持所有这些隔离级别: 
(1)脏读(READ UNCOMMITTED):事务隔离的最低级别,事务可能查询到其它事务未提交的数据, 仅可保证不读取物理损坏的数据)。
(2)读提交(READ COMMITTED):DM默认级别,保证不读脏数据。  
(3)可重复读(REPEATABLE READ):保证不可重复读,但有可能读入幻像数据。 
(4)可串行化(SERIALIZABLE):事务隔离的最高级别,事务之间完全隔离。

锁的模式

当SQL Server请求一个锁时,会选择一个影响锁的模式。锁的模式决定了锁对其他任何锁的兼容级别。如果一个查询发现请求资源上的锁和自己申请的锁兼容,那么查询就可以执行下去,但如果不兼容,查询会被阻塞。直到所请求的资源上的锁被释放。从大类来看,SQL Server中的锁可以分为如下几类:

  共享锁(S锁):用于读取资源所加的锁。拥有共享锁的资源不能被修改。共享锁默认情况下是读取了资源马上被释放。比如我读100条数据,可以想像成读完了第一条,马上释放第一条,然后再给第二条数据上锁,再释放第二条,再给第三条上锁。以此类推直到第100条。这也是为什么我在图9和图10中的查询需要将隔离等级设置为可重复读,只有设置了可重复读以上级别的隔离等级或是使用提示时,S锁才能持续到事务结束。实际上,在同一个资源上可以加无数把S锁

排他锁(X锁): 和其它任何锁都不兼容,包括其它排他锁。排它锁用于数据修改,当资源上加了排他锁时,其他请求读取或修改这个资源的事务都会被阻塞,知道排他锁被释放为止。

更新锁(U锁) :U锁可以看作是S锁和X锁的结合,用于更新数据,更新数据时首先需要找到被更新的数据,此时可以理解为被查找的数据上了S锁。当找到需要修改的数据时,需要对被修改的资源上X锁。SQL Server通过U锁来避免死锁问题。因为S锁和S锁是兼容的,通过U锁和S锁兼容,来使得更新查找时并不影响数据查找,而U锁和U锁之间并不兼容,从而减少了死锁可能性。

意向锁(IS,IU,IX):意向锁与其说是锁,倒不如说更像一个指示器。在SQL Server中,资源是有层次的,一个表中可以包含N个页,而一个页中可以包含N个行。当我们在某一个行中加了锁时。可以理解成包含这个行的页,和表的一部分已经被锁定。当另一个查询需要锁定页或是表时,再一行行去看这个页和表中所包含的数据是否被锁定就有点太痛苦了。因此SQL Server锁定一个粒度比较低的资源时,会在其父资源上加上意向锁,告诉其他查询这个资源的某一部分已经上锁。比如,当我们更新一个表中的某一行时,其所在的页和表都会获得意向排他锁,

资源

说明

RID

用于锁定堆中的单个行的行标识符。

KEY

索引中用于保护可序列化事务中的键范围的行锁。

PAGE

数据库中的 8 KB 页,例如数据页或索引页。

EXTENT

一组连续的八页,例如数据页或索引页。

HoBT

堆或 B 树。 用于保护没有聚集索引的表中的 B 树(索引)或堆数据页的锁。

TABLE

包括所有数据和索引的整个表。

FILE

数据库文件。

APPLICATION

应用程序专用的资源。

METADATA

元数据锁。

ALLOCATION_UNIT

分配单元。

DATABASE

整个数据库。

SQL Server中锁的粒度


锁之间的兼容性

1





0 0
原创粉丝点击