Memcached源码分析 - Memcached源码分析之命令解析(2)

来源:互联网 发布:收短信的软件 编辑:程序博客网 时间:2024/05/06 20:15

文章列表:

《Memcached源码分析 - Memcached源码分析之基于Libevent的网络模型(1)》

《Memcached源码分析 - Memcached源码分析之命令解析(2)》

《Memcached源码分析 - Memcached源码分析之消息回应(3)  》

《Memcached源码分析 - Memcached源码分析之HashTable(4) 》

《Memcached源码分析 - Memcached源码分析之增删改查操作(5) 》

《Memcached源码分析 - Memcached源码分析之LRU算法(6)》 

《Memcached源码分析 - Memcached源码分析之存储机制Slabs(7)》

《Memcached源码分析 - Memcached源码分析之总结篇(8)》


前言

从我们上一章《Memcached源码分析 - Memcached源码分析之基于Libevent的网络模型(1)》我们基本了解了Memcached的网络模型。这一章节,我们需要详细解读Memcached的命令解析。

我们回顾上一章发现Memcached会分成主线程和N个工作线程。主线程主要用于监听accpet客户端的Socket连接,而工作线程主要用于接管具体的客户端连接。

主线程和工作线程之间主要通过基于Libevent的pipe的读写事件来监听,当有连接练上来的时候,主线程会将连接交个某一个工作线程去接管,后期客户端和服务端的读写工作都会在这个工作线程中进行。

工作线程也是基于Libevent的事件的,当有读或者写的事件进来的时候,就会触发事件的回调函数。

那么Memcached是如何来解析客户端上传的命令数据报文的呢?这一章我们详细讲解命令的解析过程,下一章会讲解Memcached对客户端的回应。


Memcached的命令解析源码分析

conn数据结构

每一个连接都会有自己的一个conn数据结构。这个结构主要存储每个连接的基本信息。

这一章中用到的几个比较重要的参数:

char * rbuf:用于存储客户端数据报文中的命令。

int rsize:rbuf的大小。

char * rcurr:未解析的命令的字符指针。

int rbytes:未解析的命令的长度。


typedef struct conn conn;struct conn {    int    sfd;    sasl_conn_t *sasl_conn;    bool authenticated;    enum conn_states  state;    enum bin_substates substate;    rel_time_t last_cmd_time;    struct event event;    short  ev_flags;    short  which;   /** which events were just triggered */    char   *rbuf;   /** buffer to read commands into */    char   *rcurr;  /** but if we parsed some already, this is where we stopped */    int    rsize;   /** total allocated size of rbuf */    int    rbytes;  /** how much data, starting from rcur, do we have unparsed */    char   *wbuf;    char   *wcurr;    int    wsize;    int    wbytes;    /** which state to go into after finishing current write */    enum conn_states  write_and_go;    void   *write_and_free; /** free this memory after finishing writing */    char   *ritem;  /** when we read in an item's value, it goes here */    int    rlbytes;    /* data for the nread state */    /**     * item is used to hold an item structure created after reading the command     * line of set/add/replace commands, but before we finished reading the actual     * data. The data is read into ITEM_data(item) to avoid extra copying.     */    void   *item;     /* for commands set/add/replace  */    /* data for the swallow state */    int    sbytes;    /* how many bytes to swallow */    /* data for the mwrite state */    struct iovec *iov;    int    iovsize;   /* number of elements allocated in iov[] */    int    iovused;   /* number of elements used in iov[] */    struct msghdr *msglist;    int    msgsize;   /* number of elements allocated in msglist[] */    int    msgused;   /* number of elements used in msglist[] */    int    msgcurr;   /* element in msglist[] being transmitted now */    int    msgbytes;  /* number of bytes in current msg */    item   **ilist;   /* list of items to write out */    int    isize;    item   **icurr;    int    ileft;    char   **suffixlist;    int    suffixsize;    char   **suffixcurr;    int    suffixleft;    enum protocol protocol;   /* which protocol this connection speaks */    enum network_transport transport; /* what transport is used by this connection */    /* data for UDP clients */    int    request_id; /* Incoming UDP request ID, if this is a UDP "connection" */    struct sockaddr_in6 request_addr; /* udp: Who sent the most recent request */    socklen_t request_addr_size;    unsigned char *hdrbuf; /* udp packet headers */    int    hdrsize;   /* number of headers' worth of space is allocated */    bool   noreply;   /* True if the reply should not be sent. */    /* current stats command */    struct {        char *buffer;        size_t size;        size_t offset;    } stats;    /* Binary protocol stuff */    /* This is where the binary header goes */    protocol_binary_request_header binary_header;    uint64_t cas; /* the cas to return */    short cmd; /* current command being processed */    int opaque;    int keylen;    conn   *next;     /* Used for generating a list of conn structures */    LIBEVENT_THREAD *thread; /* Pointer to the thread object serving this connection */};

整体流程

1. 当客户端和Memcached建立TCP连接后,Memcached会基于Libevent的event事件来监听客户端是否有可以读取的数据。

2. 当客户端有命令数据报文上报的时候,就会触发drive_machine方法中的conn_read这个Case。

3. memcached通过try_read_network方法读取客户端的报文。如果读取失败,则返回conn_closing,去关闭客户端的连接;如果没有读取到任何数据,则会返回conn_waiting,继续等待客户端的事件到来,并且退出drive_machine的循环;如果数据读取成功,则会将状态转交给conn_parse_cmd处理,读取到的数据会存储在c->rbuf容器中。

4. conn_parse_cmd主要的工作就是用来解析命令。主要通过try_read_command这个方法来读取c->rbuf中的命令数据,通过\n来分隔数据报文的命令。如果c->buf内存块中的数据匹配不到\n,则返回继续等待客户端的命令数据报文到来conn_waiting;否则就会转交给process_command方法,来处理具体的命令(命令解析会通过\0符号来分隔)。

5. process_command主要用来处理具体的命令。其中tokenize_command这个方法非常重要,将命令拆解成多个元素(KEY的最大长度250)。例如我们以get命令为例,最终会跳转到process_get_command这个命令 process_*_command这一系列就是处理具体的命令逻辑的。

6. 我们进入process_get_command,当获取数据处理完毕之后,会转交到conn_mwrite这个状态。如果获取数据失败,则关闭连接。

7. 进入conn_mwrite后,主要是通过transmit方法来向客户端提交数据。如果写数据失败,则关闭连接或退出drive_machine循环;如果写入成功,则又转交到conn_new_cmd这个状态。

8. conn_new_cmd这个状态主要是处理c->rbuf中剩余的命令。主要看一下reset_cmd_handler这个方法,这个方法回去判断c->rbytes中是否还有剩余的报文没处理,如果未处理,则转交到conn_parse_cmd(第四步)继续解析剩余命令;如果已经处理了,则转交到conn_waiting,等待新的事件到来。在转交之前,每次都会执行一次conn_shrink方法。

9. conn_shrink方法主要用来处理命令报文容器c->rbuf和输出内容的容器是否数据满了?是否需要扩大buffer的大小,是否需要移动内存块。接受命令报文的初始化内存块大小2048,最大8192




命令rbuf数据结构变化图:

1. 读取客户端的数据



2. 解析buf中的命令。如果遇到\n,则表明是一个命令语句的结尾标识符。


3. 命令拆分。命令解析出来之后,对命令进行分解,分解是通过空格来分离的。第一个参数一般为操作方法,第二个参数一般为KEY。


4. 内存块重设置。如果rbuf内存块使用空间不足,或者大于8k,则需要进行重新分配内存块。


从drive_machine开始

我们上一节看到客户端连接的读写事件回调函数:event_handler,这个方法中最终调用的是drive_machine。

void event_handler(const int fd, const short which, void *arg) {conn *c;//组装conn结构c = (conn *) arg;assert(c != NULL);c->which = which;/* sanity */if (fd != c->sfd) {if (settings.verbose > 0)fprintf(stderr, "Catastrophic: event fd doesn't match conn fd!\n");conn_close(c);return;}//最终转交给了drive_machine这个方法drive_machine(c);/* wait for next event */return;}


drive_machine:

drive_machine这个方法中,都是通过c->state来判断需要处理的逻辑。

conn_listening:监听状态

conn_waiting:等待状态

conn_read:读取状态

conn_parse_cmd:命令行解析

conn_mwrite:向客户端写数据

conn_new_cmd:解析新的命令

static void drive_machine(conn *c) {bool stop = false;int sfd;socklen_t addrlen;struct sockaddr_storage addr;int nreqs = settings.reqs_per_event;int res;const char *str;#ifdef HAVE_ACCEPT4static int use_accept4 = 1;#elsestatic int use_accept4 = 0;#endifassert(c != NULL);while (!stop) {switch (c->state) {case conn_listening://.......更多代码}

我们继续看一下conn_read、conn_wait和conn_parse_cmd状态的代码。

//这边是继续等待客户端的数据报文到来case conn_waiting:if (!update_event(c, EV_READ | EV_PERSIST)) {if (settings.verbose > 0)fprintf(stderr, "Couldn't update event\n");conn_set_state(c, conn_closing);break;}//等待的过程中,将连接状态设置为读取状态,并且stop设置为true,退出while(stop)的循环conn_set_state(c, conn_read);stop = true;break;//读取数据的事件,当客户端有数据报文上传的时候,就会触发libevent的读事件case conn_read://try_read_network 主要读取TCP数据//返回try_read_result的枚举类型结构,通过这个枚举类型,来判断是否已经读取到数据,是否读取失败等情况res = IS_UDP(c->transport) ? try_read_udp(c) : try_read_network(c);switch (res) {//没有读取到数据,那么继续将事件设置为等待。//while(stop)会继续循环,去调用conn_waiting这个casecase READ_NO_DATA_RECEIVED:conn_set_state(c, conn_waiting);break;//如果有数据读取到了,这个时候就需要调用conn_parse_cmd逻辑//conn_parse_cmd:主要用来解析读取到的命令case READ_DATA_RECEIVED:conn_set_state(c, conn_parse_cmd);break;//读取失败的状态,则直接调用conn_closing 关闭客户端的连接case READ_ERROR:conn_set_state(c, conn_closing);break;case READ_MEMORY_ERROR: /* Failed to allocate more memory *//* State already set by try_read_network */break;}break;//这边是解析Memcached的客户端命令,例如解析:set username zhulicase conn_parse_cmd://try_read_command方法很关键,用来读取命令//如果这个方法返回为0,则表示解析命令失败(因为TCP粘包拆包的原因,可能命令不完整,需要继续等待数据到来)if (try_read_command(c) == 0) {/* wee need more data! *///这边的注释貌似写错误了吧,应该是we need more data!conn_set_state(c, conn_waiting);}break;

try_read_network

这个方法主要是读取TCP网络数据。读取到的数据会放进c->rbuf的buf中。

如果buf没有空间存储更多数据的时候,就会触发内存块的重新分配。重新分配,memcached限制了4次,估计是担忧客户端的恶意攻击导致存储命令行数据报文的buf不断的realloc。

//这个方法是通过TCP的方式读取客户端传递过来的命令数据static enum try_read_result try_read_network(conn *c) {//这个方法会最终返回try_read_result的枚举类型//默认设置READ_NO_DATA_RECEIVED:没有接受到数据enum try_read_result gotdata = READ_NO_DATA_RECEIVED;int res;int num_allocs = 0;assert(c != NULL);//c->rcurr 存放未解析命令内容指针   c->rbytes 还有多少没解析过的数据//c->rbuf 用于读取命令的buf,存储命令字符串的指针  c->rsize rbuf的size        //这边每次都会将前一次剩余的命令报文,移动到c->rbuf的头部。        if (c->rcurr != c->rbuf) {if (c->rbytes != 0) /* otherwise there's nothing to copy */memmove(c->rbuf, c->rcurr, c->rbytes);c->rcurr = c->rbuf;}//循环从fd中读取数据while (1) {//如果buf满了,则需要重新分配一块更大的内存//当未解析的数据size 大于等于 buf块的size,则需要重新分配if (c->rbytes >= c->rsize) {//最多分配4次if (num_allocs == 4) {return gotdata;}++num_allocs;//从新分配一块新的内存块,内存大小为rsize的两倍char *new_rbuf = realloc(c->rbuf, c->rsize * 2);if (!new_rbuf) {STATS_LOCK();stats.malloc_fails++;STATS_UNLOCK();if (settings.verbose > 0) {fprintf(stderr, "Couldn't realloc input buffer\n");}c->rbytes = 0; /* ignore what we read */out_of_memory(c, "SERVER_ERROR out of memory reading request");c->write_and_go = conn_closing;return READ_MEMORY_ERROR;}//c->rcurr和c->rbuf指向到新的buf块c->rcurr = c->rbuf = new_rbuf;c->rsize *= 2; //rsize则乘以2}//avail可以计算出buf块中剩余的空间多大int avail = c->rsize - c->rbytes;//这边我们可以看到Socket的读取方法//c->sfd为Socket的ID//c->rbuf + c->rbytes 意思是从buf块中空余的内存地址开始存放新读取到的数据//avail 每次接收最大能读取多大的数据res = read(c->sfd, c->rbuf + c->rbytes, avail);//如果接受到的结果res大于0,则说明Socket中读取到了数据//设置成READ_DATA_RECEIVED枚举类型,表明读取到了数据if (res > 0) {pthread_mutex_lock(&c->thread->stats.mutex); //线程锁c->thread->stats.bytes_read += res;pthread_mutex_unlock(&c->thread->stats.mutex);gotdata = READ_DATA_RECEIVED;c->rbytes += res; //未处理的数据量 + 当前读取到的命令sizeif (res == avail) {continue;} else {break;}}//判断读取失败的两种情况if (res == 0) {return READ_ERROR;}if (res == -1) {if (errno == EAGAIN || errno == EWOULDBLOCK) {break;}return READ_ERROR;}}return gotdata;}

try_read_command

这个方法主要是用来读取rbuf中的命令的。

例如命令:set username zhuli\r\n get username \n

则会通过\n这个换行符来分隔数据报文中的命令。因为数据报文会有粘包和拆包的特性,所以只有等到命令行完整了才能进行解析。所有只有匹配到了\n符号,才能匹配一个完整的命令。

//如果我们已经在c->rbuf中有可以处理的命令行了,则就可以调用此函数来处理命令解析static int try_read_command(conn *c) {assert(c != NULL);assert(c->rcurr <= (c->rbuf + c->rsize)); //这边断言assert(c->rbytes > 0);if (c->protocol == negotiating_prot || c->transport == udp_transport) {if ((unsigned char) c->rbuf[0] == (unsigned char) PROTOCOL_BINARY_REQ) {c->protocol = binary_prot;} else {c->protocol = ascii_prot;}if (settings.verbose > 1) {fprintf(stderr, "%d: Client using the %s protocol\n", c->sfd,prot_text(c->protocol));}}//有两种模式,是否是二进制模式还是ascii模式if (c->protocol == binary_prot) {//更多代码} else {//这边主要处理非二进制模式的命令解析char *el, *cont;//如果c->rbytes==0 表示buf容器中没有可以处理的命令报文,则返回0//0 是让程序继续等待接收新的客户端报文if (c->rbytes == 0)return 0;//查找命令中是否有\n,memcache的命令通过\n来分割//当客户端的数据报文过来的时候,Memcached通过查找接收到的数据中是否有\n换行符来判断收到的命令数据包是否完整//例如命令:set username 10234344 \n get username \n//这个命令就可以分割成两个命令,分别是set和get的命令//el返回\n的字符指针地址el = memchr(c->rcurr, '\n', c->rbytes);//如果没有找到\n,说明命令不完整,则返回0,继续等待接收新的客户端数据报文if (!el) {//c->rbytes是接收到的数据包的长度//这边非常有趣,如果一次接收的数据报文大于了1K,则Memcached回去判断这个请求是否太大了,是否有问题?//然后会关闭这个客户端的链接if (c->rbytes > 1024) {/* * We didn't have a '\n' in the first k. This _has_ to be a * large multiget, if not we should just nuke the connection. */char *ptr = c->rcurr;while (*ptr == ' ') { /* ignore leading whitespaces */++ptr;}if (ptr - c->rcurr > 100|| (strncmp(ptr, "get ", 4) && strncmp(ptr, "gets ", 5))) {conn_set_state(c, conn_closing);return 1;}}return 0;}//如果找到了\n,说明c->rcurr中有完整的命令了cont = el + 1; //下一个命令开始的指针节点//这边判断是否是\r\n,如果是\r\n,则el往前移一位if ((el - c->rcurr) > 1 && *(el - 1) == '\r') {el--;}//然后将命令的最后一个字符用 \0(字符串结束符号)来分隔*el = '\0';assert(cont <= (c->rcurr + c->rbytes));c->last_cmd_time = current_time; //最后命令时间//处理命令,c->rcurr就是命令process_command(c, c->rcurr);c->rbytes -= (cont - c->rcurr); //这个地方为何不这样写?c->rbytes = c->rcurr - contc->rcurr = cont; //将c->rcurr指向到下一个命令的指针节点assert(c->rcurr <= (c->rbuf + c->rsize));}return 1;}

process_command

这个方法主要用来处理具体的命令。将命令分解后,分发到不同的具体操作中去。

//命令处理函数//前一个方法中,我们找到了rbuf中\n的字符,然后将其替换成\0static void process_command(conn *c, char *command) {//tokens结构,这边会将c->rcurr(command)命令拆分出来//并且将命令通过空格符号来分隔成多个元素//例如:set username zhuli,则会拆分成3个元素,分别是set和username和zhuli//MAX_TOKENS最大值为8,说明memcached的命令行,最多可以拆分成8个元素token_t tokens[MAX_TOKENS];size_t ntokens;int comm;assert(c != NULL);MEMCACHED_PROCESS_COMMAND_START(c->sfd, c->rcurr, c->rbytes);if (settings.verbose > 1)fprintf(stderr, "<%d %s\n", c->sfd, command);/* * for commands set/add/replace, we build an item and read the data * directly into it, then continue in nread_complete(). */c->msgcurr = 0;c->msgused = 0;c->iovused = 0;if (add_msghdr(c) != 0) {out_of_memory(c, "SERVER_ERROR out of memory preparing response");return;}//tokenize_command非常重要,主要就是拆分命令的//并且将拆分出来的命令元素放进tokens的数组中//参数:command为命令ntokens = tokenize_command(command, tokens, MAX_TOKENS);//tokens[COMMAND_TOKEN] COMMAND_TOKEN=0//分解出来的命令的第一个参数为操作方法if (ntokens >= 3&& ((strcmp(tokens[COMMAND_TOKEN].value, "get") == 0)|| (strcmp(tokens[COMMAND_TOKEN].value, "bget") == 0))) {//处理get命令process_get_command(c, tokens, ntokens, false);} else if ((ntokens == 6 || ntokens == 7)&& ((strcmp(tokens[COMMAND_TOKEN].value, "add") == 0 && (comm =NREAD_ADD))|| (strcmp(tokens[COMMAND_TOKEN].value, "set") == 0&& (comm = NREAD_SET))|| (strcmp(tokens[COMMAND_TOKEN].value, "replace") == 0&& (comm = NREAD_REPLACE))|| (strcmp(tokens[COMMAND_TOKEN].value, "prepend") == 0&& (comm = NREAD_PREPEND))|| (strcmp(tokens[COMMAND_TOKEN].value, "append") == 0&& (comm = NREAD_APPEND)))) {//处理更新命令process_update_command(c, tokens, ntokens, comm, false);//更多代码....}

tokenize_command:

这个方法主要用于分解命令。具体是将一个命令语句分解成多个元素。

例如:set username zhuli\n

则会分解成三个元素:set和username和zhuli这三个元素。

//拆分命令方法static size_t tokenize_command(char *command, token_t *tokens,const size_t max_tokens) {char *s, *e;size_t ntokens = 0; //命令参数游标size_t len = strlen(command); //命令长度unsigned int i = 0;assert(command != NULL && tokens != NULL && max_tokens > 1);s = e = command;for (i = 0; i < len; i++) {//指针不停往前走,如果遇到空格,则会停下来,将命令元素拆分出来,放进tokens这个数组中if (*e == ' ') {if (s != e) {tokens[ntokens].value = s;tokens[ntokens].length = e - s;ntokens++;//这边将空格替换成\0//Memcached这边的代码写的非常的好,这边的命令进行切割的时候,并没有将内存块进行拷贝,而是在原来的内存块上进行切割*e = '\0';//最多8个元素if (ntokens == max_tokens - 1) {e++;s = e; /* so we don't add an extra token */break;}}s = e + 1;}e++;}if (s != e) {tokens[ntokens].value = s;tokens[ntokens].length = e - s;ntokens++;}/* * If we scanned the whole string, the terminal value pointer is null, * otherwise it is the first unprocessed character. */tokens[ntokens].value = *e == '\0' ? NULL : e;tokens[ntokens].length = 0;ntokens++;//返回值为参数个数,例如分解出3个元素,则返回3return ntokens;}

process_get_command

get的命令例子。get请求拿到Memcached Item中的数据后,又会跳转到conn_mwrite这个状态,将进入向客户端写数据的状态。

//处理GET请求的命令static inline void process_get_command(conn *c, token_t *tokens, size_t ntokens,bool return_cas) {//处理GET命令char *key;size_t nkey;int i = 0;item *it;//&tokens[0] 是操作的方法//&tokens[1] 为key//token_t 存储了value和lengthtoken_t *key_token = &tokens[KEY_TOKEN];char *suffix;assert(c != NULL);do {//如果key的长度不为0while (key_token->length != 0) {key = key_token->value;nkey = key_token->length;//判断key的长度是否超过了最大的长度,memcache key的最大长度为250//这个地方需要非常注意,我们在平常的使用中,还是要注意key的字节长度的if (nkey > KEY_MAX_LENGTH) {//out_string 向外部输出数据out_string(c, "CLIENT_ERROR bad command line format");while (i-- > 0) {item_remove(*(c->ilist + i));}return;}//这边是从Memcached的内存存储快中去取数据it = item_get(key, nkey);if (settings.detail_enabled) {//状态记录,key的记录数的方法stats_prefix_record_get(key, nkey, NULL != it);}//如果获取到了数据if (it) {//c->ilist 存放用于向外部写数据的buf//如果ilist太小,则重新分配一块内存if (i >= c->isize) {item **new_list = realloc(c->ilist,sizeof(item *) * c->isize * 2);if (new_list) {c->isize *= 2;c->ilist = new_list;} else {STATS_LOCK();stats.malloc_fails++;STATS_UNLOCK();item_remove(it);break;}}/* * Construct the response. Each hit adds three elements to the * outgoing data list: *   "VALUE " *   key *   " " + flags + " " + data length + "\r\n" + data (with \r\n) *///初始化返回出去的数据结构if (return_cas) {MEMCACHED_COMMAND_GET(c->sfd, ITEM_key(it), it->nkey,it->nbytes, ITEM_get_cas(it));/* Goofy mid-flight realloc. */if (i >= c->suffixsize) {char **new_suffix_list = realloc(c->suffixlist,sizeof(char *) * c->suffixsize * 2);if (new_suffix_list) {c->suffixsize *= 2;c->suffixlist = new_suffix_list;} else {STATS_LOCK();stats.malloc_fails++;STATS_UNLOCK();item_remove(it);break;}}suffix = cache_alloc(c->thread->suffix_cache);if (suffix == NULL) {STATS_LOCK();stats.malloc_fails++;STATS_UNLOCK();out_of_memory(c,"SERVER_ERROR out of memory making CAS suffix");item_remove(it);while (i-- > 0) {item_remove(*(c->ilist + i));}return;}*(c->suffixlist + i) = suffix;int suffix_len = snprintf(suffix, SUFFIX_SIZE, " %llu\r\n",(unsigned long long) ITEM_get_cas(it));if (add_iov(c, "VALUE ", 6) != 0|| add_iov(c, ITEM_key(it), it->nkey) != 0|| add_iov(c, ITEM_suffix(it), it->nsuffix - 2) != 0|| add_iov(c, suffix, suffix_len) != 0|| add_iov(c, ITEM_data(it), it->nbytes) != 0) {item_remove(it);break;}} else {MEMCACHED_COMMAND_GET(c->sfd, ITEM_key(it), it->nkey,it->nbytes, ITEM_get_cas(it));if (add_iov(c, "VALUE ", 6) != 0|| add_iov(c, ITEM_key(it), it->nkey) != 0|| add_iov(c, ITEM_suffix(it),it->nsuffix + it->nbytes) != 0) {item_remove(it);break;}}if (settings.verbose > 1) {int ii;fprintf(stderr, ">%d sending key ", c->sfd);for (ii = 0; ii < it->nkey; ++ii) {fprintf(stderr, "%c", key[ii]);}fprintf(stderr, "\n");}/* item_get() has incremented it->refcount for us */pthread_mutex_lock(&c->thread->stats.mutex);c->thread->stats.slab_stats[it->slabs_clsid].get_hits++;c->thread->stats.get_cmds++;pthread_mutex_unlock(&c->thread->stats.mutex);item_update(it);*(c->ilist + i) = it;i++;} else {pthread_mutex_lock(&c->thread->stats.mutex);c->thread->stats.get_misses++;c->thread->stats.get_cmds++;pthread_mutex_unlock(&c->thread->stats.mutex);MEMCACHED_COMMAND_GET(c->sfd, key, nkey, -1, 0);}key_token++;}/* * If the command string hasn't been fully processed, get the next set * of tokens. *///如果命令行中的命令没有全部被处理,则继续下一个命令//一个命令行中,可以get多个元素if (key_token->value != NULL) {ntokens = tokenize_command(key_token->value, tokens, MAX_TOKENS);key_token = tokens;}} while (key_token->value != NULL);c->icurr = c->ilist;c->ileft = i;if (return_cas) {c->suffixcurr = c->suffixlist;c->suffixleft = i;}if (settings.verbose > 1)fprintf(stderr, ">%d END\n", c->sfd);/* If the loop was terminated because of out-of-memory, it is not reliable to add END\r\n to the buffer, because it might not end in \r\n. So we send SERVER_ERROR instead. */if (key_token->value != NULL || add_iov(c, "END\r\n", 5) != 0|| (IS_UDP(c->transport) && build_udp_headers(c) != 0)) {out_of_memory(c, "SERVER_ERROR out of memory writing get response");} else {//将状态修改为写,这边读取到item的数据后,又开始需要往客户端写数据了。conn_set_state(c, conn_mwrite);c->msgcurr = 0;}}

conn_mwrite和transmit

主要用于向客户端写数据。写完数据后,如果写失败,则关闭连接;如果写成功,则会将状态修改成conn_new_cmd,继续解析c->rbuf中剩余的命令

//drive_machine方法//这个conn_mwrite是向客户端写数据case conn_mwrite:if (IS_UDP(c->transport) && c->msgcurr == 0&& build_udp_headers(c) != 0) {if (settings.verbose > 0)fprintf(stderr, "Failed to build UDP headers\n");conn_set_state(c, conn_closing);break;}//transmit这个方法非常重要,主要向客户端写数据的操作都在这个方法中进行//返回transmit_result枚举类型,用于判断是否写成功,如果失败,则关闭连接switch (transmit(c)) {//如果向客户端发送数据成功case TRANSMIT_COMPLETE:if (c->state == conn_mwrite) {conn_release_items(c);/* XXX:  I don't know why this wasn't the general case */if (c->protocol == binary_prot) {conn_set_state(c, c->write_and_go);} else {//这边是TCP的状态//状态又会切回到conn_new_cmd这个状态//conn_new_cmd主要是继续解析c->rbuf容器中剩余的命令参数conn_set_state(c, conn_new_cmd);}} else if (c->state == conn_write) {if (c->write_and_free) {free(c->write_and_free);c->write_and_free = 0;}conn_set_state(c, c->write_and_go);} else {if (settings.verbose > 0)fprintf(stderr, "Unexpected state %d\n", c->state);conn_set_state(c, conn_closing);}break;case TRANSMIT_INCOMPLETE:case TRANSMIT_HARD_ERROR:break; /* Continue in state machine. *///失败的情况case TRANSMIT_SOFT_ERROR:stop = true;break;}break;

这个方法主要是向客户端发送数据。

//这个方法主要向客户端写数据static enum transmit_result transmit(conn *c) {assert(c != NULL);if (c->msgcurr < c->msgused && c->msglist[c->msgcurr].msg_iovlen == 0) {/* Finished writing the current msg; advance to the next. */c->msgcurr++;}if (c->msgcurr < c->msgused) {ssize_t res;//msghdr 发送数据的结构struct msghdr *m = &c->msglist[c->msgcurr];//sendmsg 发送数据方法res = sendmsg(c->sfd, m, 0);//发送成功if (res > 0) {pthread_mutex_lock(&c->thread->stats.mutex);c->thread->stats.bytes_written += res;pthread_mutex_unlock(&c->thread->stats.mutex);/* We've written some of the data. Remove the completed iovec entries from the list of pending writes. */while (m->msg_iovlen > 0 && res >= m->msg_iov->iov_len) {res -= m->msg_iov->iov_len;m->msg_iovlen--;m->msg_iov++;}/* Might have written just part of the last iovec entry; adjust it so the next write will do the rest. */if (res > 0) {m->msg_iov->iov_base = (caddr_t) m->msg_iov->iov_base + res;m->msg_iov->iov_len -= res;}return TRANSMIT_INCOMPLETE;}if (res == -1 && (errno == EAGAIN || errno == EWOULDBLOCK)) {if (!update_event(c, EV_WRITE | EV_PERSIST)) {if (settings.verbose > 0)fprintf(stderr, "Couldn't update event\n");conn_set_state(c, conn_closing);return TRANSMIT_HARD_ERROR;}return TRANSMIT_SOFT_ERROR;}/* if res == 0 or res == -1 and error is not EAGAIN or EWOULDBLOCK, we have a real error, on which we close the connection */if (settings.verbose > 0)perror("Failed to write, and not due to blocking");if (IS_UDP(c->transport))conn_set_state(c, conn_read);elseconn_set_state(c, conn_closing);return TRANSMIT_HARD_ERROR;} else {return TRANSMIT_COMPLETE;}}

conn_new_cmd和reset_cmd_handler

继续解析c->rbuf中剩余的命令。

//处理c->rbuf中剩余的命令case conn_new_cmd:/* Only process nreqs at a time to avoid starving other connections */--nreqs;if (nreqs >= 0) {reset_cmd_handler(c); //会跳转到reset_cmd_handler这个方法} else {pthread_mutex_lock(&c->thread->stats.mutex);c->thread->stats.conn_yields++;pthread_mutex_unlock(&c->thread->stats.mutex);if (c->rbytes > 0) {/* We have already read in data into the input buffer, so libevent will most likely not signal read events on the socket (unless more data is available. As a hack we should just put in a request to write data, because that should be possible ;-) */if (!update_event(c, EV_WRITE | EV_PERSIST)) {if (settings.verbose > 0)fprintf(stderr, "Couldn't update event\n");conn_set_state(c, conn_closing);break;}}stop = true;}break;
//重新设置命令handlerstatic void reset_cmd_handler(conn *c) {c->cmd = -1;c->substate = bin_no_state;if (c->item != NULL) {item_remove(c->item);c->item = NULL;}conn_shrink(c); //这个方法是检查c->rbuf容器的大小//如果剩余未解析的命令 > 0的话,继续跳转到conn_parse_cmd解析命令if (c->rbytes > 0) {conn_set_state(c, conn_parse_cmd);} else {//如果命令都解析完成了,则继续等待新的数据到来conn_set_state(c, conn_waiting);}}

conn_shrink

这个方法主要检查命令行容器的大小。

//检查rbuf的大小static void conn_shrink(conn *c) {assert(c != NULL);if (IS_UDP(c->transport))return;//如果bufsize大于READ_BUFFER_HIGHWAT(8192)的时候需要重新处理//DATA_BUFFER_SIZE等于2048,所以我们可以看到之前的代码中对rbuf最多只能进行4次recallocif (c->rsize > READ_BUFFER_HIGHWAT && c->rbytes < DATA_BUFFER_SIZE) {char *newbuf;if (c->rcurr != c->rbuf)memmove(c->rbuf, c->rcurr, (size_t) c->rbytes); //内存移动newbuf = (char *) realloc((void *) c->rbuf, DATA_BUFFER_SIZE);if (newbuf) {c->rbuf = newbuf;c->rsize = DATA_BUFFER_SIZE;}/* TODO check other branch... */c->rcurr = c->rbuf;}if (c->isize > ITEM_LIST_HIGHWAT) {item **newbuf = (item**) realloc((void *) c->ilist,ITEM_LIST_INITIAL * sizeof(c->ilist[0]));if (newbuf) {c->ilist = newbuf;c->isize = ITEM_LIST_INITIAL;}/* TODO check error condition? */}if (c->msgsize > MSG_LIST_HIGHWAT) {struct msghdr *newbuf = (struct msghdr *) realloc((void *) c->msglist,MSG_LIST_INITIAL * sizeof(c->msglist[0]));if (newbuf) {c->msglist = newbuf;c->msgsize = MSG_LIST_INITIAL;}/* TODO check error condition? */}if (c->iovsize > IOV_LIST_HIGHWAT) {struct iovec *newbuf = (struct iovec *) realloc((void *) c->iov,IOV_LIST_INITIAL * sizeof(c->iov[0]));if (newbuf) {c->iov = newbuf;c->iovsize = IOV_LIST_INITIAL;}/* TODO check return value */}}








1 0
原创粉丝点击