Word2Vec里实现Huffman树

来源:互联网 发布:杨树基因组数据库 编辑:程序博客网 时间:2024/06/04 19:25

word2vec里是拿数组实现word2vec,效率很高,在学校里经常见到的是递归迭代实现Huffman树,这对于处理大量叶子节点的问题不是一个最佳方法。
数组法:

#include <stdio.h>#include <stdlib.h>#include <math.h>#define MAX_CODE_LENGTH 40//宏定义没有;struct vocab_word{    long long cn;    int * point;    char *word,*code,codelen;   };long long vocab_size,a,b,k,min1,min2,i;//词汇表大小struct vocab_word * vocab;int VocabCompare(const void *a,const void *b){    return *((long long *)b)-*((long long *)a);}int main(){    freopen("input.txt","r",stdin);    scanf("%lld",&vocab_size);    //printf("vocab_size:%lld\n",vocab_size);    vocab = (struct vocab_word *)calloc(vocab_size,sizeof(struct vocab_word));    for (i = 0; i < vocab_size; ++i)    {        vocab[i].code = (char *)calloc(MAX_CODE_LENGTH, sizeof(char));        vocab[i].point = (int *)calloc(MAX_CODE_LENGTH, sizeof(int));         //printf("allocate memory to vocab[%lld]\n",i);    }    long long *count = (long long *)calloc(vocab_size*2-1,sizeof(long long));    long long *binary = (long long *)calloc(vocab_size*2-1,sizeof(long long));    long long *parent_node = (long long *)calloc(vocab_size*2-1,sizeof(long long));    long long point[MAX_CODE_LENGTH];    char code[MAX_CODE_LENGTH];    for (i = 0; i < vocab_size; ++i)    {   scanf("%lld",&count[i]);        //printf("%lld",count[i]);    }    //for (i = 0; i < vocab_size; ++i) printf("%lld ",count[i]);    for (i = vocab_size; i < vocab_size*2-1; ++i)         count[i]=1e15;    //sort    qsort(count,vocab_size,sizeof(long long),VocabCompare);    //for (i = 0; i < vocab_size; ++i) printf("%lld ",count[i]);    for (i = 0; i < vocab_size; ++i)        vocab[i].cn=count[i];    //for (i = 0; i < vocab_size; ++i) printf("%lld ",vocab[i].cn);    long long pos1 = vocab_size-1;    long long pos2 = vocab_size;    for (a = 0; a < vocab_size-1; ++a)//迭代vocab_size-1次构造huffman树    {        //每次寻找两个最小的点min1和min2(次小),最小点为0,次小点为1        if (pos1>=0)        {            if (count[pos1]<count[pos2])            {                min1=pos1;                pos1--;            }else{                min1 = pos2;                pos2++;            }        }else{            min1 = pos2;            pos2++;        }        if (pos1>=0)        {            if (count[pos1]<count[pos2])            {                min2=pos1;                pos1--;            }else{                min2=pos2;                pos2++;            }        }else{            min2 = pos2;            pos2++;        }        //printf("count[%lld]=%lld count[%lld]=%lld\n",min1,count[min1],min2,count[min2]);        count[vocab_size + a]=count[min1]+count[min2];        //printf("count[%lld]=%lld\n",vocab_size+a,count[vocab_size+a]);        parent_node[min1]=vocab_size+a;        parent_node[min2]=vocab_size+a;        binary[min2]=1;        //printf("binary[%lld]=%lld\n",min2,binary[min2]);              }    //for (i = 0; i < 2*vocab_size-1; ++i) printf("%lld ",binary[i]);    //for (i = 0; i < 2*vocab_size-1; ++i) printf("i=%lld,parent_node:%lld\n",i,parent_node[i]);    for (a = 0; a < vocab_size; ++a)    {        b=a;        k=0;        while(1){            code[k] = binary[b];            point[k] = b;            k++;            b=parent_node[b];            if (b==vocab_size*2-2) break;        }        vocab[a].codelen=k;//huffman编码长度        vocab[a].point[0]=vocab_size*2-2;        for (b = 0; b < k; ++b)//逆序处理        {            vocab[a].code[k-b-1]=code[b];            vocab[a].point[k-b]=point[b];        }        //printf("vocab[%lld].cn=%lld\n",a,vocab[a].cn);        //printf("vocab[%lld].codelen=%d\n",a,vocab[a].codelen);        //for ( i = 0; i < k; ++i) printf("vocab[%lld].code=%d\n",a,vocab[a].code[i]);        //for ( i = 0; i < k+1; ++i) printf("vocab[%lld].point=%d\n",a,vocab[a].point[i]);    }    free(count);    free(binary);    free(parent_node);    //output    for (a = 0; a < vocab_size; ++a)    {        printf("vocab[%lld].cn=%lld\n",a,vocab[a].cn);        //printf("vocab[%lld].codelen=%d\n",a,vocab[a].codelen);        printf("code: ");        for ( i = 0; i < vocab[a].codelen; ++i) printf("%d ",vocab[a].code[i]);        printf("\n");        //printf("point: ");        //for ( i = 0; i < vocab[a].codelen+1; ++i) printf("%d ",vocab[a].point[i]);        //printf("\n");    }}

迭代法:

#include <stdio.h>#include <stdlib.h>typedef int ElemType;struct BTreeNode{    ElemType data;    struct BTreeNode * left;    struct BTreeNode * right;};//1、输出二叉树,可在前序遍历的基础上修改。采用广义表格式,元素类型为int void PrintBTree_int(struct BTreeNode *BT){    if (BT!=NULL)    {        printf("%d",BT->data);//输出根结点的值          if (BT->left!=NULL||BT->right!=NULL)        {            printf("(");            PrintBTree_int(BT->left);//输出左子树              if (BT->right!=NULL)                printf(",");            PrintBTree_int(BT->right);//输出右子树              printf(")");        }    }}//2、根据数组 a 中 n 个权值建立一棵哈夫曼树,返回树根指针 struct BTreeNode * CreateHuffman(ElemType a[],int n){    int i,j;    struct BTreeNode **b,*q;    b = (struct BTreeNode **)malloc(n*sizeof(struct BTreeNode));    for (i = 0; i < n; ++i) //初始化b指针数组,使每个指针元素指向a数组中对应的元素结点     {        b[i] = (struct BTreeNode *)malloc(sizeof(struct BTreeNode));        b[i]->data = a[i];        b[i]->left=b[i]->right=NULL;    }    for (int i = 1; i < n; ++i)//进行 n-1 次循环建立哈夫曼树     {        //k1表示森林中具有最小权值的树根结点的下标,k2为次最小的下标          int k1=-1,k2;        for (int j = 0; j < n; ++j)//让k1初始指向森林中第一棵树,k2指向第二棵          {            if (b[j]!=NULL&&k1==-1)            {                k1=j;                continue;            }            if (b[j]!=NULL)            {                k2=j;                break;            }        }        for (int j = k2; j < n; ++j)        {            if (b[j]!=NULL)            {                if (b[j]->data<b[k1]->data)                {                    k2=k1;                    k1=j;                }                else if (b[j]->data<b[k2]->data)                {                    k2=j;                }            }        }             //由最小权值树和次最小权值树建立一棵新树,q指向树根结点             q=(struct BTreeNode *)malloc(sizeof(struct BTreeNode));            q->data = b[k1]->data + b[k2]->data;            q->left = b[k1];            q->right =b[k2];            b[k1] = q;//将指向新树的指针赋给b指针数组中k1位置             b[k2] = NULL;//k2位置为空      }    free(b);//删除动态建立的数组b      return q;//返回整个哈夫曼树的树根指针 }//3、求哈夫曼树的带权路径长度 ElemType WeightPathLength(struct BTreeNode * FBT,int len)//len初始值为0{    if (FBT==NULL)//空树返回0      {        return 0;       }    else    {        if (FBT->left == NULL && FBT->right == NULL)//访问到叶子结点            return FBT->data*len;        else//访问到非叶子结点,进行递归调用,返回左右子树的带权路径长度之和,len递增              return WeightPathLength(FBT->left,len+1)+WeightPathLength(FBT->right,len+1);    }}//4、哈夫曼编码(可以根据哈夫曼树带权路径长度的算法基础上进行修改) void HuffmanCoding(struct BTreeNode *FBT,int len)//len初始值为0{    static int a[10];//定义静态数组a,保存每个叶子的编码,数组长度至少是树深度减一     if (FBT!=NULL)      {        if (FBT->left==NULL&&FBT->right==NULL)        {            int i;            printf("节点权值为%d的编码",FBT->data);            for (i = 0; i < len; ++i)                printf("%d",a[i]);            printf("\n");        }else        {            //访问到非叶子结点时分别向左右子树递归调用,并把分支上的0、1编码保存到数组a              //的对应元素中,向下深入一层时len值增1            a[len] = 0;            HuffmanCoding(FBT->left,len+1);            a[len]=1;            HuffmanCoding(FBT->right,len+1);        }    }}//主函数 int main(){    freopen("input.txt","r",stdin);    int n,i;    ElemType *a;    struct BTreeNode * fbt;    //printf("从键盘输入待构造的哈夫曼树中带权叶子结点数n:");      while(1)    {        scanf("%d",&n);        printf("n:%d\n",n);        if (n>1)            break;        else            printf("重输n值:");    }    a=(ElemType *)malloc(n*sizeof(ElemType));    //printf("从键盘输入%d个整数作为权值:", n);     for (int i = 0; i < n; ++i)    {        scanf("%d",&a[i]);        printf("a[%d]=%d\n",i,a[i]);    }    fbt = CreateHuffman(a,n);    printf("广义表形式的哈夫曼树:");      PrintBTree_int(fbt);    printf("\n");    printf("哈夫曼树的带权路径长度:");      printf("%d\n",WeightPathLength(fbt,0));    printf("树中每个叶子结点的哈夫曼编码:\n");      HuffmanCoding(fbt,0);    return 0;}
0 0
原创粉丝点击