DBN的训练过程

来源:互联网 发布:脸萌软件电脑版 编辑:程序博客网 时间:2024/05/04 00:06

             有一种更好的神经网络模型,这就是受限玻尔兹曼机。使用层叠波尔兹曼机组成深度神经网络的方法,在深度学习里被称作深度信念网络DBN,这是目前非常流行的方法。

         经典的DBN网络结构 是由若干层 RBM 和一层 BP 组成的一种深层神经网络, 结构如下图所示.:

      

DBN 在训练模型的过程中主要分为两步:
             第 1 步:分别单独无监督地训练每一层 RBM 网络,确保特征向量映射到不同特征空间时,都尽可能多地保留特征信息;
             第 2 步:在 DBN 的最后一层设置 BP 网络,接收 RBM 的输出特征向量作为它的输入特征向量,有监督地训练实体关系分类器.而且每一层 RBM 网络只能确保自身层内的 权值对该层特征向量映射达到最优,并不是对整个 DBN 的特征向量映射达到最优,所以反向传播网络还将错误信息自顶向下传播至每一层 RBM,微调整个 DBN 网络.RBM 网络训练模型的过程可以看作对一个深层 BP 网络权值参数的初始化,使DBN 克服了 BP 网络因随机初始化权值参数而容易陷入局部最优和训练时间长的缺点.这可以很直观的解释,DBNs的BP算法只需要对权值参数空间进行一个局部的搜索,这相比前向神经网络来说,训练是要快的,而且收敛的时间也少。

         上述训练模型中第一步在深度学习的术语叫做预训练,第二步叫做微调。最上面有监督学习的那一层,根据具体的应用领域可以换成任何分类器模型,而不必是BP网络。

         

 深度神经网络的另一个常见的应用是特征提取。

        文献:Philippe Hamel and Douglas Eck, LEARNING FEATURES FROM MUSIC AUDIO WITH DEEP BELIEF NETWORKS.

        通过训练一个5层的深度网络提取音乐的特征,用于音乐风格的分类,其分类精度比基于梅尔倒谱系数特征分类的方法提到了14个百分点。


他们的实现思路非常简单,用上述层叠的多个RBM网络组成深度网络结构来提取音乐的特征。输入的原始数据是经过分帧,加窗之后的信号的频谱。分类器采用的是支撑矢量机SVM。对比的方法则是提取MFCC特征系数,分类器同样采用SVM。更多的细节和实验结果可以参考上面提到的文献。

    

        深度网络是一种良好的无监督学习方法,其特征提取功能能够针对不同概念的粒度大小,能够在很多领域得到广泛的应用。通常,DBN主要用于对一维数据的建模比较有效,例如语音。而通过级联多层卷积网络组成深度网络的模型主要用于二维数据,例如图像等。


0 0