java nio--概述

来源:互联网 发布:windows 2003server 编辑:程序博客网 时间:2024/06/03 17:20

Java NIO 由以下几个核心部分组成:

  • Channels
  • Buffers
  • Selectors

虽然Java NIO 中除此之外还有很多类和组件,但在我看来,Channel,Buffer 和 Selector 构成了核心的API。其它组件,如Pipe和FileLock,只不过是与三个核心组件共同使用的工具类。因此,在概述中我将集中在这三个组件上。其它组件会在单独的章节中讲到。

Channel

Java NIO的通道类似流,但又有些不同:

  • 既可以从通道中读取数据,又可以写数据到通道。但流的读写通常是单向的。
  • 通道可以异步地读写。
  • 通道中的数据总是要先读到一个Buffer,或者总是要从一个Buffer中写入。

正如上面所说,从通道读取数据到缓冲区,从缓冲区写入数据到通道。如下图所示:

                                                                             

Channel的实现

这些是Java NIO中最重要的通道的实现:

  • FileChannel
  • DatagramChannel
  • SocketChannel
  • ServerSocketChannel

FileChannel 从文件中读写数据。

DatagramChannel 能通过UDP读写网络中的数据。

SocketChannel 能通过TCP读写网络中的数据。

ServerSocketChannel可以监听新进来的TCP连接,像Web服务器那样。对每一个新进来的连接都会创建一个SocketChannel。

基本的 Channel 示例

下面是一个使用FileChannel读取数据到Buffer中的示例:

RandomAccessFile aFile = new RandomAccessFile("data/nio-data.txt", "rw");FileChannel inChannel = aFile.getChannel();ByteBuffer buf = ByteBuffer.allocate(48);int bytesRead = inChannel.read(buf);while (bytesRead != -1) {System.out.println("Read " + bytesRead);buf.flip();while(buf.hasRemaining()){System.out.print((char) buf.get());}buf.clear();bytesRead = inChannel.read(buf);}aFile.close();</span>

注意 buf.flip() 的调用,首先读取数据到Buffer,然后反转Buffer,接着再从Buffer中读取数据。下一节会深入讲解Buffer的更多细节。

Buffer

java NIO中的Buffer用于和NIO通道进行交互。如你所知,数据是从通道读入缓冲区,从缓冲区写入到通道中的。

缓冲区本质上是一块可以写入数据,然后可以从中读取数据的内存。这块内存被包装成NIO Buffer对象,并提供了一组方法,用来方便的访问该块内存。

Buffer的基本用法

使用Buffer读写数据一般遵循以下四个步骤:

  1. 写入数据到Buffer
  2. 调用flip()方法
  3. 从Buffer中读取数据
  4. 调用clear()方法或者compact()方法

当向buffer写入数据时,buffer会记录下写了多少数据。一旦要读取数据,需要通过flip()方法将Buffer从写模式切换到读模式。在读模式下,可以读取之前写入到buffer的所有数据。

一旦读完了所有的数据,就需要清空缓冲区,让它可以再次被写入。有两种方式能清空缓冲区:调用clear()或compact()方法。clear()方法会清空整个缓冲区。compact()方法只会清除已经读过的数据。任何未读的数据都被移到缓冲区的起始处,新写入的数据将放到缓冲区未读数据的后面。

下面是一个使用Buffer的例子:

RandomAccessFile aFile = new RandomAccessFile("data/nio-data.txt", "rw");FileChannel inChannel = aFile.getChannel();//create buffer with capacity of 48 bytesByteBuffer buf = ByteBuffer.allocate(48);int bytesRead = inChannel.read(buf); //read into buffer.while (bytesRead != -1) {  buf.flip();  //make buffer ready for read  while(buf.hasRemaining()){      System.out.print((char) buf.get()); // read 1 byte at a time  }  buf.clear(); //make buffer ready for writing  bytesRead = inChannel.read(buf);}aFile.close();</span>

Buffer的capacity,position和limit

缓冲区本质上是一块可以写入数据,然后可以从中读取数据的内存。这块内存被包装成NIO Buffer对象,并提供了一组方法,用来方便的访问该块内存。

为了理解Buffer的工作原理,需要熟悉它的三个属性:

  • capacity
  • position
  • limit

position和limit的含义取决于Buffer处在读模式还是写模式。不管Buffer处在什么模式,capacity的含义总是一样的。

这里有一个关于capacity,position和limit在读写模式中的说明,详细的解释在插图后面。

   

capacity

作为一个内存块,Buffer有一个固定的大小值,也叫“capacity”.你只能往里写capacity个byte、long,char等类型。一旦Buffer满了,需要将其清空(通过读数据或者清除数据)才能继续写数据往里写数据。

position

当你写数据到Buffer中时,position表示当前的位置。初始的position值为0.当一个byte、long等数据写到Buffer后, position会向前移动到下一个可插入数据的Buffer单元。position最大可为capacity – 1.

当读取数据时,也是从某个特定位置读。当将Buffer从写模式切换到读模式,position会被重置为0. 当从Buffer的position处读取数据时,position向前移动到下一个可读的位置。

limit

在写模式下,Buffer的limit表示你最多能往Buffer里写多少数据。 写模式下,limit等于Buffer的capacity。

当切换Buffer到读模式时, limit表示你最多能读到多少数据。因此,当切换Buffer到读模式时,limit会被设置成写模式下的position值。换句话说,你能读到之前写入的所有数据(limit被设置成已写数据的数量,这个值在写模式下就是position)

Buffer的类型

Java NIO 有以下Buffer类型

  • ByteBuffer
  • MappedByteBuffer
  • CharBuffer
  • DoubleBuffer
  • FloatBuffer
  • IntBuffer
  • LongBuffer
  • ShortBuffer


如你所见,这些Buffer类型代表了不同的数据类型。换句话说,就是可以通过char,short,int,long,float 或 double类型来操作缓冲区中的字节。

MappedByteBuffer 有些特别,在涉及它的专门章节中再讲。

Buffer的分配

要想获得一个Buffer对象首先要进行分配。 每一个Buffer类都有一个allocate方法。下面是一个分配48字节capacity的ByteBuffer的例子。

ByteBuffer buf = ByteBuffer.allocate(48);

这是分配一个可存储1024个字符的CharBuffer:

CharBuffer buf = CharBuffer.allocate(1024);

向Buffer中写数据

写数据到Buffer有两种方式:

  • 从Channel写到Buffer。
  • 通过Buffer的put()方法写到Buffer里。

从Channel写到Buffer的例子

int bytesRead = inChannel.read(buf); //read into buffer.

通过put方法写Buffer的例子:

buf.put(127);

put方法有很多版本,允许你以不同的方式把数据写入到Buffer中。例如, 写到一个指定的位置,或者把一个字节数组写入到Buffer。 更多Buffer实现的细节参考JavaDoc。

flip()方法

flip方法将Buffer从写模式切换到读模式。调用flip()方法会将position设回0,并将limit设置成之前position的值。

换句话说,position现在用于标记读的位置,limit表示之前写进了多少个byte、char等 —— 现在能读取多少个byte、char等。

从Buffer中读取数据

从Buffer中读取数据有两种方式:

  1. 从Buffer读取数据到Channel。
  2. 使用get()方法从Buffer中读取数据。

从Buffer读取数据到Channel的例子:

//read from buffer into channel.int bytesWritten = inChannel.write(buf);

使用get()方法从Buffer中读取数据的例子

byte aByte = buf.get();

get方法有很多版本,允许你以不同的方式从Buffer中读取数据。例如,从指定position读取,或者从Buffer中读取数据到字节数组。更多Buffer实现的细节参考JavaDoc。

rewind()方法

Buffer.rewind()将position设回0,所以你可以重读Buffer中的所有数据。limit保持不变,仍然表示能从Buffer中读取多少个元素(byte、char等)。

clear()与compact()方法

一旦读完Buffer中的数据,需要让Buffer准备好再次被写入。可以通过clear()或compact()方法来完成。

如果调用的是clear()方法,position将被设回0,limit被设置成 capacity的值。换句话说,Buffer 被清空了。Buffer中的数据并未清除,只是这些标记告诉我们可以从哪里开始往Buffer里写数据。

如果Buffer中有一些未读的数据,调用clear()方法,数据将“被遗忘”,意味着不再有任何标记会告诉你哪些数据被读过,哪些还没有。

如果Buffer中仍有未读的数据,且后续还需要这些数据,但是此时想要先先写些数据,那么使用compact()方法。

compact()方法将所有未读的数据拷贝到Buffer起始处。然后将position设到最后一个未读元素正后面。limit属性依然像clear()方法一样,设置成capacity。现在Buffer准备好写数据了,但是不会覆盖未读的数据。

mark()与reset()方法

通过调用Buffer.mark()方法,可以标记Buffer中的一个特定position。之后可以通过调用Buffer.reset()方法恢复到这个position。例如:

buffer.mark();//call buffer.get() a couple of times, e.g. during parsing.buffer.reset();  //set position back to mark.

equals()与compareTo()方法

可以使用equals()和compareTo()方法两个Buffer。

equals()

当满足下列条件时,表示两个Buffer相等:

  1. 有相同的类型(byte、char、int等)。
  2. Buffer中剩余的byte、char等的个数相等。
  3. Buffer中所有剩余的byte、char等都相同。

如你所见,equals只是比较Buffer的一部分,不是每一个在它里面的元素都比较。实际上,它只比较Buffer中的剩余元素。

compareTo()方法

compareTo()方法比较两个Buffer的剩余元素(byte、char等), 如果满足下列条件,则认为一个Buffer“小于”另一个Buffer:

  1. 第一个不相等的元素小于另一个Buffer中对应的元素 。
  2. 所有元素都相等,但第一个Buffer比另一个先耗尽(第一个Buffer的元素个数比另一个少)。
Channel 和 Buffer

基本上,所有的 IO 在NIO 中都从一个Channel 开始。Channel 有点象流。 数据可以从Channel读到Buffer中,也可以从Buffer 写到Channel中。这里有个图示:

                                         

Channel和Buffer有好几种类型。下面是JAVA NIO中的一些主要Channel的实现:

  • FileChannel
  • DatagramChannel
  • SocketChannel
  • ServerSocketChannel

正如你所看到的,这些通道涵盖了UDP 和 TCP 网络IO,以及文件IO。

与这些类一起的有一些有趣的接口,但为简单起见,我尽量在概述中不提到它们。本教程其它章节与它们相关的地方我会进行解释。

以下是Java NIO里关键的Buffer实现:

  • ByteBuffer
  • CharBuffer
  • DoubleBuffer
  • FloatBuffer
  • IntBuffer
  • LongBuffer
  • ShortBuffer

这些Buffer覆盖了你能通过IO发送的基本数据类型:byte, short, int, long, float, double 和 char。

Java NIO 还有个 MappedByteBuffer,用于表示内存映射文件, 我也不打算在概述中说明。

Selector

Selector(选择器)是Java NIO中能够检测一到多个NIO通道,并能够知晓通道是否为诸如读写事件做好准备的组件。这样,一个单独的线程可以管理多个channel,从而管理多个网络连接。

这是在一个单线程中使用一个Selector处理3个Channel的图示:

                                                                                                                

为什么使用Selector?

仅用单个线程来处理多个Channels的好处是,只需要更少的线程来处理通道。事实上,可以只用一个线程处理所有的通道。对于操作系统来说,线程之间上下文切换的开销很大,而且每个线程都要占用系统的一些资源(如内存)。因此,使用的线程越少越好。

但是,需要记住,现代的操作系统和CPU在多任务方面表现的越来越好,所以多线程的开销随着时间的推移,变得越来越小了。实际上,如果一个CPU有多个内核,不使用多任务可能是在浪费CPU能力。不管怎么说,关于那种设计的讨论应该放在另一篇不同的文章中。在这里,只要知道使用Selector能够处理多个通道就足够了。

下面是单线程使用一个Selector处理3个channel的示例图:

Selector的创建

通过调用Selector.open()方法创建一个Selector,如下:

Selector selector = Selector.open();

向Selector注册通道

为了将Channel和Selector配合使用,必须将channel注册到selector上。通过SelectableChannel.register()方法来实现,如下:

channel.configureBlocking(false);SelectionKey key = channel.register(selector,Selectionkey.OP_READ);

与Selector一起使用时,Channel必须处于非阻塞模式下。这意味着不能将FileChannel与Selector一起使用,因为FileChannel不能切换到非阻塞模式。而套接字通道都可以。

注意register()方法的第二个参数。这是一个“interest集合”,意思是在通过Selector监听Channel时对什么事件感兴趣。可以监听四种不同类型的事件:

  1. Connect
  2. Accept
  3. Read
  4. Write

通道触发了一个事件意思是该事件已经就绪。所以,某个channel成功连接到另一个服务器称为“连接就绪”。一个server socket channel准备好接收新进入的连接称为“接收就绪”。一个有数据可读的通道可以说是“读就绪”。等待写数据的通道可以说是“写就绪”。

这四种事件用SelectionKey的四个常量来表示:

  1. SelectionKey.OP_CONNECT
  2. SelectionKey.OP_ACCEPT
  3. SelectionKey.OP_READ
  4. SelectionKey.OP_WRITE

如果你对不止一种事件感兴趣,那么可以用“位或”操作符将常量连接起来,如下:

int interestSet = SelectionKey.OP_READ | SelectionKey.OP_WRITE;

在下面还会继续提到interest集合。

SelectionKey

在上一小节中,当向Selector注册Channel时,register()方法会返回一个SelectionKey对象。这个对象包含了一些你感兴趣的属性:

  • interest集合
  • ready集合
  • Channel
  • Selector
  • 附加的对象(可选)

下面我会描述这些属性。

interest集合

就像向Selector注册通道一节中所描述的,interest集合是你所选择的感兴趣的事件集合。可以通过SelectionKey读写interest集合,像这样:

int interestSet = selectionKey.interestOps();boolean isInterestedInAccept  = (interestSet & SelectionKey.OP_ACCEPT) == SelectionKey.OP_ACCEPT;boolean isInterestedInConnect = interestSet & SelectionKey.OP_CONNECT;boolean isInterestedInRead    = interestSet & SelectionKey.OP_READ;boolean isInterestedInWrite   = interestSet & SelectionKey.OP_WRITE;

可以看到,用“位与”操作interest 集合和给定的SelectionKey常量,可以确定某个确定的事件是否在interest 集合中。

ready集合

ready 集合是通道已经准备就绪的操作的集合。在一次选择(Selection)之后,你会首先访问这个ready set。Selection将在下一小节进行解释。可以这样访问ready集合:

int readySet = selectionKey.readyOps();

可以用像检测interest集合那样的方法,来检测channel中什么事件或操作已经就绪。但是,也可以使用以下四个方法,它们都会返回一个布尔类型:

selectionKey.isAcceptable();selectionKey.isConnectable();selectionKey.isReadable();selectionKey.isWritable();

Channel + Selector

从SelectionKey访问Channel和Selector很简单。如下:

Channel  channel  = selectionKey.channel();Selector selector = selectionKey.selector();

附加的对象

可以将一个对象或者更多信息附着到SelectionKey上,这样就能方便的识别某个给定的通道。例如,可以附加 与通道一起使用的Buffer,或是包含聚集数据的某个对象。使用方法如下:

selectionKey.attach(theObject);Object attachedObj = selectionKey.attachment();

还可以在用register()方法向Selector注册Channel的时候附加对象。如:

SelectionKey key = channel.register(selector, SelectionKey.OP_READ, theObject);

通过Selector选择通道

一旦向Selector注册了一或多个通道,就可以调用几个重载的select()方法。这些方法返回你所感兴趣的事件(如连接、接受、读或写)已经准备就绪的那些通道。换句话说,如果你对“读就绪”的通道感兴趣,select()方法会返回读事件已经就绪的那些通道。

下面是select()方法:

  • int select()
  • int select(long timeout)
  • int selectNow()

select()阻塞到至少有一个通道在你注册的事件上就绪了。

select(long timeout)和select()一样,除了最长会阻塞timeout毫秒(参数)。

selectNow()不会阻塞,不管什么通道就绪都立刻返回(译者注:此方法执行非阻塞的选择操作。如果自从前一次选择操作后,没有通道变成可选择的,则此方法直接返回零。)。

select()方法返回的int值表示有多少通道已经就绪。亦即,自上次调用select()方法后有多少通道变成就绪状态。如果调用select()方法,因为有一个通道变成就绪状态,返回了1,若再次调用select()方法,如果另一个通道就绪了,它会再次返回1。如果对第一个就绪的channel没有做任何操作,现在就有两个就绪的通道,但在每次select()方法调用之间,只有一个通道就绪了。

selectedKeys()

一旦调用了select()方法,并且返回值表明有一个或更多个通道就绪了,然后可以通过调用selector的selectedKeys()方法,访问“已选择键集(selected key set)”中的就绪通道。如下所示:

Set selectedKeys = selector.selectedKeys();

当像Selector注册Channel时,Channel.register()方法会返回一个SelectionKey 对象。这个对象代表了注册到该Selector的通道。可以通过SelectionKey的selectedKeySet()方法访问这些对象。

可以遍历这个已选择的键集合来访问就绪的通道。如下:

Set selectedKeys = selector.selectedKeys();Iterator keyIterator = selectedKeys.iterator();while(keyIterator.hasNext()) {    SelectionKey key = keyIterator.next();    if(key.isAcceptable()) {        // a connection was accepted by a ServerSocketChannel.    } else if (key.isConnectable()) {        // a connection was established with a remote server.    } else if (key.isReadable()) {        // a channel is ready for reading    } else if (key.isWritable()) {        // a channel is ready for writing    }    keyIterator.remove();}

这个循环遍历已选择键集中的每个键,并检测各个键所对应的通道的就绪事件。

注意每次迭代末尾的keyIterator.remove()调用。Selector不会自己从已选择键集中移除SelectionKey实例。必须在处理完通道时自己移除。下次该通道变成就绪时,Selector会再次将其放入已选择键集中。

SelectionKey.channel()方法返回的通道需要转型成你要处理的类型,如ServerSocketChannel或SocketChannel等。

wakeUp()

某个线程调用select()方法后阻塞了,即使没有通道已经就绪,也有办法让其从select()方法返回。只要让其它线程在第一个线程调用select()方法的那个对象上调用Selector.wakeup()方法即可。阻塞在select()方法上的线程会立马返回。

如果有其它线程调用了wakeup()方法,但当前没有线程阻塞在select()方法上,下个调用select()方法的线程会立即“醒来(wake up)”。

close()

用完Selector后调用其close()方法会关闭该Selector,且使注册到该Selector上的所有SelectionKey实例无效。通道本身并不会关闭。

完整的示例

这里有一个完整的示例,打开一个Selector,注册一个通道注册到这个Selector上(通道的初始化过程略去),然后持续监控这个Selector的四种事件(接受,连接,读,写)是否就绪。

Selector selector = Selector.open();channel.configureBlocking(false);SelectionKey key = channel.register(selector, SelectionKey.OP_READ);while(true) {  int readyChannels = selector.select();  if(readyChannels == 0) continue;  Set selectedKeys = selector.selectedKeys();  Iterator keyIterator = selectedKeys.iterator();  while(keyIterator.hasNext()) {    SelectionKey key = keyIterator.next();    if(key.isAcceptable()) {        // a connection was accepted by a ServerSocketChannel.    } else if (key.isConnectable()) {        // a connection was established with a remote server.    } else if (key.isReadable()) {        // a channel is ready for reading    } else if (key.isWritable()) {        // a channel is ready for writing    }    keyIterator.remove();  }}




0 0
原创粉丝点击