PX4飞控中利用EKF估计姿态角代码详解

来源:互联网 发布:网络写作集剧本编写 编辑:程序博客网 时间:2024/05/29 13:56

PX4飞控中利用EKF估计姿态角代码详解

PX4飞控中主要用EKF算法来估计飞行器三轴姿态角,具体c文件在px4\Firmware\src\modules\attitude_estimator_ekf\codegen\目录下

  • 具体原理
  • 程序详解
  • 下一步

1.具体原理

EKF算法原理不再多讲,具体可参见上一篇blog http://blog.csdn.net/lizilpl/article/details/45289541.

这篇讲EKF算法执行过程,需要以下几个关键式子:

  • 飞行器状态矩阵这里写图片描述

    这里这里写图片描述表示三轴角速度,

    这里写图片描述表示三轴角加速度,

    这里写图片描述表示加速度在机体坐标系三轴分量,

    这里写图片描述,表示磁力计在机体坐标系三轴分量。

  • 测量矩阵
    这里写图片描述分别由三轴陀螺仪,加速度计,磁力计测得。

  • 状态转移矩阵

    飞行器下一时刻状态预测矩阵如下:

    这里写图片描述

    其中W项均为高斯噪声,这里写图片描述 为飞行器在姿态发生变化后,坐标系余旋变换矩阵,对该函数在这里写图片描述处求一阶偏导,可得到状态转移矩阵:这里写图片描述

    此时可得到飞行器状态的先验估计:这里写图片描述

  • 利用测量值修正先验估计

    这里写图片描述

    这里测量矩阵H与状态矩阵X为线性关系,故无需求偏导。

    卡尔曼增益:这里写图片描述

    状态后验估计:这里写图片描述

    方差后验估计:这里写图片描述

2.程序详解

整个EKF的代码挺长的,大部分是矩阵运算,而且使用嵌套for循环来执行的,所以读起来比较费劲,但是要是移植到自己工程上的话必然离不开这一步,所以花了一个下午把各个细节理清楚,顺便记录分享。

/* Include files */#include "rt_nonfinite.h"#include "attitudeKalmanfilter.h"#include "rdivide.h"#include "norm.h"#include "cross.h"#include "eye.h"#include "mrdivide.h"/* '输入参数:updateVect[3]:用来记录陀螺仪,加速度计,磁力计传感器数值是否有效              z[9]     :测量矩阵    x_aposteriori_k[12]:上一时刻状态后验估计矩阵,用来预测当前状态   P_aposteriori_k[144]:上一时刻后验估计方差        eulerAngles[3] :输出欧拉角        Rot_matrix[9]  :输出余弦矩阵     x_aposteriori[12] :输出状态后验估计矩阵     P_aposteriori[144] :输出方差后验估计矩阵'*/void attitudeKalmanfilter(const uint8_T updateVect[3],real32_T dt, const real32_T z[9], const real32_T x_aposteriori_k[12], const real32_T P_aposteriori_k[144], const real32_T q[12], real32_T r[9], real32_T eulerAngles[3], real32_T Rot_matrix[9],real32_T x_aposteriori[12], real32_T P_aposteriori[144]){/*以下这一堆变量用到的时候再解释*/  real32_T wak[3];  real32_T O[9];  real_T dv0[9];  real32_T a[9];  int32_T i;  real32_T b_a[9];  real32_T x_n_b[3];  real32_T b_x_aposteriori_k[3];  real32_T z_n_b[3];  real32_T c_a[3];  real32_T d_a[3];  int32_T i0;  real32_T x_apriori[12];  real_T dv1[144];  real32_T A_lin[144];  static const int8_T iv0[36] = { 0, 0, 0,                                  0, 0, 0,                                  0, 0, 0,                                  1, 0, 0,                                  0, 1, 0,                                  0, 0, 1,                                  0, 0, 0,                                  0, 0, 0,                                  0, 0, 0,                                  0, 0, 0,                                  0, 0, 0,                                  0, 0, 0 };  real32_T b_A_lin[144];  real32_T b_q[144];  real32_T c_A_lin[144];  real32_T d_A_lin[144];  real32_T e_A_lin[144];  int32_T i1;  real32_T P_apriori[144];  real32_T b_P_apriori[108];  static const int8_T iv1[108] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                                   0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                                   0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,                                   0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,                                   0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,                                   0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,                                   0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,                                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,                                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 };  real32_T K_k[108];  real32_T fv0[81];  static const int8_T iv2[108] = { 1, 0, 0, 0, 0, 0, 0, 0, 0,                                   0, 1, 0, 0, 0, 0, 0, 0, 0,                                   0, 0, 1, 0, 0, 0, 0, 0, 0,                                   0, 0, 0, 0, 0, 0, 0, 0, 0,                                   0, 0, 0, 0, 0, 0, 0, 0, 0,                                   0, 0, 0, 0, 0, 0, 0, 0, 0,                                   0, 0, 0, 1, 0, 0, 0, 0, 0,                                   0, 0, 0, 0, 1, 0, 0, 0, 0,                                   0, 0, 0, 0, 0, 1, 0, 0, 0,                                   0, 0, 0, 0, 0, 0, 1, 0, 0,                                   0, 0, 0, 0, 0, 0, 0, 1, 0,                                   0, 0, 0, 0, 0, 0, 0, 0, 1 };  real32_T b_r[81];  real32_T fv1[81];  real32_T f0;  real32_T c_P_apriori[36]={ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 1, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 };  real32_T fv2[36];  static const int8_T iv4[36] = { 1, 0, 0,                                   0, 1, 0,                                   0, 0, 1,                                   0, 0, 0,                                   0, 0, 0,                                   0, 0, 0,                                   0, 0, 0,                                   0, 0, 0,                                   0, 0, 0 };  real32_T c_r[9];  real32_T b_K_k[36];  real32_T d_P_apriori[72];  static const int8_T iv5[72]   = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,       0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 };  real32_T c_K_k[72];  static const int8_T iv6[72] = { 1, 0, 0, 0, 0, 0,                                   0, 1, 0, 0, 0, 0,                                   0, 0, 1, 0, 0, 0,                                   0, 0, 0, 0, 0, 0,                                   0, 0, 0, 0, 0, 0,                                   0, 0, 0, 1, 0, 0,                                  0, 0, 0, 0, 1, 0,                                   0, 0, 0, 0, 0, 1,                                   0, 0, 0, 0, 0, 0,                                   0, 0, 0, 0, 0, 0,                                   0, 0, 0, 0, 0, 0 };  real32_T b_z[6];  static const int8_T iv7[72]   = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,       0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,      0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,       0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 };  static const int8_T iv8[72]   = { 1, 0, 0, 0, 0, 0,        0, 1, 0, 0, 0, 0,        0, 0, 1, 0, 0, 0,        0, 0, 0, 0, 0, 0,        0, 0, 0, 0, 0, 0,       0, 0, 0, 0, 0, 0,        0, 0, 0, 1, 0, 0,        0, 0, 0, 0, 0, 1 };  real32_T fv3[6];  real32_T c_z[6];  /*开始计算*/  /*'wak[]为当前状态三轴角加速度'*/  wak[0] = x_aposteriori_k[3];  wak[1] = x_aposteriori_k[4];  wak[2] = x_aposteriori_k[5];

/* ‘欧拉角旋转矩阵’

O=0wzwywz0wxwywx0

这里的O矩阵相当于A矩阵中的这里写图片描述的转置矩阵!
*/

  O[0] = 0.0F;  O[1] = -x_aposteriori_k[2];  O[2] = x_aposteriori_k[1];  O[3] = x_aposteriori_k[2];  O[4] = 0.0F;  O[5] = -x_aposteriori_k[0];  O[6] = -x_aposteriori_k[1];  O[7] = x_aposteriori_k[0];  O[8] = 0.0F;  /* 预测转过一个小角度之后的重力向量三轴投影 */  /* a = [1,      -delta_z, delta_y;     *    delta_z,  1     , -delta_x;     *   -delta_y, delta_x,     1  ]'; */  eye(dv0);  //dv0矩阵单位化  for (i = 0; i < 9; i++) {    a[i] = (real32_T)dv0[i] + O[i] * dt;  }  /* 预测转过一个小角度之后的磁力向量三轴投影 */  eye(dv0);  for (i = 0; i < 9; i++) {    b_a[i] = (real32_T)dv0[i] + O[i] * dt;  }

/*

a=1ΔzΔyΔz1ΔxΔyΔx1

其实就是这个大家都很眼熟的的余弦矩阵的转置, 用来更新机体转过一个角度之后的重力和磁力三轴投影,只不过两次计算间隔时间很短,变化角度很小,因此忽略高阶小量之后就变成了这个样子。这里还少一个时间系数dt,下面会补上。
cosycoszcosysinzsiny(sinxsinycosz)+(cosxsinz)(sinxsinysinz)+(cosxcosz)sinxcosy(cosxsinycosz)+(sinxsinz)(cosxsinysinz)+(sinxcosz)cosxcosy

*/

  x_n_b[0] = x_aposteriori_k[0];         //角速度  x_n_b[1] = x_aposteriori_k[1];  x_n_b[2] = x_aposteriori_k[2];  b_x_aposteriori_k[0] = x_aposteriori_k[6];  // 加速度  b_x_aposteriori_k[1] = x_aposteriori_k[7];  b_x_aposteriori_k[2] = x_aposteriori_k[8];  z_n_b[0] = x_aposteriori_k[9];        //磁力计  z_n_b[1] = x_aposteriori_k[10];  z_n_b[2] = x_aposteriori_k[11];  for (i = 0; i < 3; i++) {    c_a[i] = 0.0F;    for (i0 = 0; i0 < 3; i0++) {      c_a[i] += a[i + 3 * i0] * b_x_aposteriori_k[i0];    }    d_a[i] = 0.0F;    for (i0 = 0; i0 < 3; i0++) {      d_a[i] += b_a[i + 3 * i0] * z_n_b[i0];    }    x_apriori[i] = x_n_b[i] + dt * wak[i];  }  for (i = 0; i < 3; i++) {    x_apriori[i + 3] = wak[i];  }  for (i = 0; i < 3; i++) {    x_apriori[i + 6] = c_a[i];  }  for (i = 0; i < 3; i++) {    x_apriori[i + 9] = d_a[i];  }   //得到状态先验估计  

/*
根据上述矩阵运算,可以得到:

c_a[13]=[axayaz]a[33]

从而:

ω˜kra,kΔt[31]=c_a[13]T

d_a[13]=[mxmymz]a[33]

从而:

ω˜krm,kΔt[31]=d_a[13]T

其中

[axayaz][mxmymz]ra,krm,k

得到状态先验估计:

Xk+1[121]=x_apriori[112]T
=[x_n_b+wakdtwakc_ad_a]T

*/

/* '开始计算A矩阵'*/  b_eye(dv1);  for (i = 0; i < 12; i++) {    for (i0 = 0; i0 < 3; i0++) {      A_lin[i0 + 12 * i] = (real32_T)iv0[i0 + 3 * i];    }   /*1 2 3列*/    for (i0 = 0; i0 < 3; i0++) {      A_lin[(i0 + 12 * i) + 3] = 0.0F;    }    /*3 4 5列*/  }  /*6 7 8 列*/  A_lin[6] = 0.0F;  A_lin[7] = x_aposteriori_k[8];  A_lin[8] = -x_aposteriori_k[7];  A_lin[18] = -x_aposteriori_k[8];  A_lin[19] = 0.0F;  A_lin[20] = x_aposteriori_k[6];  A_lin[30] = x_aposteriori_k[7];  A_lin[31] = -x_aposteriori_k[6];  A_lin[32] = 0.0F;  for (i = 0; i < 3; i++) {    for (i0 = 0; i0 < 3; i0++) {      A_lin[(i0 + 12 * (i + 3)) + 6] = 0.0F;    }  }  for (i = 0; i < 3; i++) {    for (i0 = 0; i0 < 3; i0++) {      A_lin[(i0 + 12 * (i + 6)) + 6] = O[i0 + 3 * i];    }  }  for (i = 0; i < 3; i++) {    for (i0 = 0; i0 < 3; i0++) {      A_lin[(i0 + 12 * (i + 9)) + 6] = 0.0F;    }  }  /*6 7 8 列*/  /*9 10 11 列*/  A_lin[9] = 0.0F;  A_lin[10] = x_aposteriori_k[11];  A_lin[11] = -x_aposteriori_k[10];  A_lin[21] = -x_aposteriori_k[11];  A_lin[22] = 0.0F;  A_lin[23] = x_aposteriori_k[9];  A_lin[33] = x_aposteriori_k[7];  A_lin[34] = -x_aposteriori_k[9];  A_lin[35] = 0.0F;  for (i = 0; i < 3; i++) {    for (i0 = 0; i0 < 3; i0++) {      A_lin[(i0 + 12 * (i + 3)) + 9] = 0.0F;    }  }  for (i = 0; i < 3; i++) {    for (i0 = 0; i0 < 3; i0++) {      A_lin[(i0 + 12 * (i + 6)) + 9] = 0.0F;    }  }  for (i = 0; i < 3; i++) {    for (i0 = 0; i0 < 3; i0++) {      A_lin[(i0 + 12 * (i + 9)) + 9] = O[i0 + 3 * i];    }  }  /*9 10 11 列*/

/*
根据上述矩阵运算,可以得到A_lin矩阵:

A_lin[1212]=0I000000A10O0A200O
其中各元素都是3*3的矩阵;I为单位矩阵,其中
A1=0azayaz0axayax0=r˜a,Tk

同样

A2=0mzmymz0mxmymx0=r˜m,Tk

*/

  for (i = 0; i < 12; i++) {    for (i0 = 0; i0 < 12; i0++) {      b_A_lin[i0 + 12 * i] = (real32_T)dv1[i0 + 12 * i] +         A_lin[i0 + 12 * i] *dt;       }  }   //最终A_link,k的逆矩阵

得到:

Alin,Tk=b_A_lin[1212]=I0000I0000I0000I+0I000000A10O0A200Odt

/*
开始根据这里写图片描述计算过程方差
*/

b_q[1212]=q00000q10000q20000q3
其中各元素都是3*3的矩阵;

  b_q[0] = q[0];  b_q[12] = 0.0F;  b_q[24] = 0.0F;  b_q[36] = 0.0F;  b_q[48] = 0.0F;  b_q[60] = 0.0F;  b_q[72] = 0.0F;  b_q[84] = 0.0F;  b_q[96] = 0.0F;  b_q[108] = 0.0F;  b_q[120] = 0.0F;  b_q[132] = 0.0F;  b_q[1] = 0.0F;  b_q[13] = q[0];  b_q[25] = 0.0F;  b_q[37] = 0.0F;  b_q[49] = 0.0F;  b_q[61] = 0.0F;  b_q[73] = 0.0F;  b_q[85] = 0.0F;  b_q[97] = 0.0F;  b_q[109] = 0.0F;  b_q[121] = 0.0F;  b_q[133] = 0.0F;  b_q[2] = 0.0F;  b_q[14] = 0.0F;  b_q[26] = q[0];  b_q[38] = 0.0F;  b_q[50] = 0.0F;  b_q[62] = 0.0F;  b_q[74] = 0.0F;  b_q[86] = 0.0F;  b_q[98] = 0.0F;  b_q[110] = 0.0F;  b_q[122] = 0.0F;  b_q[134] = 0.0F;  b_q[3] = 0.0F;  b_q[15] = 0.0F;  b_q[27] = 0.0F;  b_q[39] = q[1];  b_q[51] = 0.0F;  b_q[63] = 0.0F;  b_q[75] = 0.0F;  b_q[87] = 0.0F;  b_q[99] = 0.0F;  b_q[111] = 0.0F;  b_q[123] = 0.0F;  b_q[135] = 0.0F;  b_q[4] = 0.0F;  b_q[16] = 0.0F;  b_q[28] = 0.0F;  b_q[40] = 0.0F;  b_q[52] = q[1];  b_q[64] = 0.0F;  b_q[76] = 0.0F;  b_q[88] = 0.0F;  b_q[100] = 0.0F;  b_q[112] = 0.0F;  b_q[124] = 0.0F;  b_q[136] = 0.0F;  b_q[5] = 0.0F;  b_q[17] = 0.0F;  b_q[29] = 0.0F;  b_q[41] = 0.0F;  b_q[53] = 0.0F;  b_q[65] = q[1];  b_q[77] = 0.0F;  b_q[89] = 0.0F;  b_q[101] = 0.0F;  b_q[113] = 0.0F;  b_q[125] = 0.0F;  b_q[137] = 0.0F;  b_q[6] = 0.0F;  b_q[18] = 0.0F;  b_q[30] = 0.0F;  b_q[42] = 0.0F;  b_q[54] = 0.0F;  b_q[66] = 0.0F;  b_q[78] = q[2];  b_q[90] = 0.0F;  b_q[102] = 0.0F;  b_q[114] = 0.0F;  b_q[126] = 0.0F;  b_q[138] = 0.0F;  b_q[7] = 0.0F;  b_q[19] = 0.0F;  b_q[31] = 0.0F;  b_q[43] = 0.0F;  b_q[55] = 0.0F;  b_q[67] = 0.0F;  b_q[79] = 0.0F;  b_q[91] = q[2];  b_q[103] = 0.0F;  b_q[115] = 0.0F;  b_q[127] = 0.0F;  b_q[139] = 0.0F;  b_q[8] = 0.0F;  b_q[20] = 0.0F;  b_q[32] = 0.0F;  b_q[44] = 0.0F;  b_q[56] = 0.0F;  b_q[68] = 0.0F;  b_q[80] = 0.0F;  b_q[92] = 0.0F;  b_q[104] = q[2];  b_q[116] = 0.0F;  b_q[128] = 0.0F;  b_q[140] = 0.0F;  b_q[9] = 0.0F;  b_q[21] = 0.0F;  b_q[33] = 0.0F;  b_q[45] = 0.0F;  b_q[57] = 0.0F;  b_q[69] = 0.0F;  b_q[81] = 0.0F;  b_q[93] = 0.0F;  b_q[105] = 0.0F;  b_q[117] = q[3];  b_q[129] = 0.0F;  b_q[141] = 0.0F;  b_q[10] = 0.0F;  b_q[22] = 0.0F;  b_q[34] = 0.0F;  b_q[46] = 0.0F;  b_q[58] = 0.0F;  b_q[70] = 0.0F;  b_q[82] = 0.0F;  b_q[94] = 0.0F;  b_q[106] = 0.0F;  b_q[118] = 0.0F;  b_q[130] = q[3];  b_q[142] = 0.0F;  b_q[11] = 0.0F;  b_q[23] = 0.0F;  b_q[35] = 0.0F;  b_q[47] = 0.0F;  b_q[59] = 0.0F;  b_q[71] = 0.0F;  b_q[83] = 0.0F;  b_q[95] = 0.0F;  b_q[107] = 0.0F;  b_q[119] = 0.0F;  b_q[131] = 0.0F;  b_q[143] = q[3];  for (i = 0; i < 12; i++) {    for (i0 = 0; i0 < 12; i0++) {      A_lin[i + 12 * i0] = 0.0F;      for (i1 = 0; i1 < 12; i1++) {        A_lin[i + 12 * i0] += b_A_lin[i + 12 * i1] * P_aposteriori_k[i1 + 12 *i0];      }      c_A_lin[i + 12 * i0] = 0.0F;      for (i1 = 0; i1 < 12; i1++) {        c_A_lin[i + 12 * i0] += b_A_lin[i + 12 * i1] * b_q[i1 + 12 * i0];      }    }    for (i0 = 0; i0 < 12; i0++) {      d_A_lin[i + 12 * i0] = 0.0F;      for (i1 = 0; i1 < 12; i1++) {        d_A_lin[i + 12 * i0] += A_lin[i + 12 * i1] * b_A_lin[i0 + 12 * i1];      }      e_A_lin[i + 12 * i0] = 0.0F;      for (i1 = 0; i1 < 12; i1++) {        e_A_lin[i + 12 * i0] += c_A_lin[i + 12 * i1] * b_A_lin[i0 + 12 * i1];      }    }  }

根据上面的矩阵运算,可以得到:

A_lin[1212]=Pk[1212]bA_lin[1212];
d_A_lin[1212]=b_A_lin[1212]TA_lin[1212]=Alin,kPkAlin,Tk;

c_A_lin[1212]=Pq[1212]bA_lin[1212];
e_A_lin[1212]=b_A_lin[1212]Tc_A_lin[1212]=Alin,kQkAlin,Tk;

  for (i = 0; i < 12; i++) {    for (i0 = 0; i0 < 12; i0++) {      P_apriori[i0 + 12 * i] = d_A_lin[i0 + 12 * i] + e_A_lin[i0 + 12 * i];    }  } //最终过程方差

最终得到过程方差:

P_apriori[1212]=d_A_lin[1212]+e_A_lin[1212];

/*
下面开始利用测量值修正先验估计:用到的公式为:
这里写图片描述
这里写图片描述
这里写图片描述
*/

  if ((updateVect[0] == 1) && (updateVect[1] == 1) && (updateVect[2] == 1)) {    /*都为1表示三个传感器测量值均有效*/    if ((z[5] < 4.0F) || (z[4] > 15.0F)) {      r[1] = 10000.0F;    }    for (i = 0; i < 12; i++) {      for (i0 = 0; i0 < 9; i0++) {        b_P_apriori[i + 12 * i0] = 0.0F;        for (i1 = 0; i1 < 12; i1++) {          b_P_apriori[i + 12 * i0] += P_apriori[i + 12 * i1] * (real32_T)iv1[i1 + 12 * i0];        }      }    }    for (i = 0; i < 9; i++) {      for (i0 = 0; i0 < 12; i0++) {        K_k[i + 9 * i0] = 0.0F;        for (i1 = 0; i1 < 12; i1++) {          K_k[i + 9 * i0] += (real32_T)iv2[i + 9 * i1] * P_apriori[i1 + 12 * i0];        }      }      for (i0 = 0; i0 < 9; i0++) {        fv0[i + 9 * i0] = 0.0F;        for (i1 = 0; i1 < 12; i1++) {          fv0[i + 9 * i0] += K_k[i + 9 * i1] * (real32_T)iv1[i1 + 12 * i0];        }      }    }

同样是计算了一堆中间矩阵

b_P_apriori[912]=iv1[912]P_apriori[1212]=HkPk;
iv1[912]=I000000I000I=Hk
k_k[129]=P_apriori[1212]iv2[912]=PkHTk;
iv2[129]=I00000I0000I=HTk

fv0[99]=I00000010001k_k[129]=HkPkHTk

b_r[99]=r0000r1000r233

    b_r[0] = r[0];    b_r[9] = 0.0F;    b_r[18] = 0.0F;    b_r[27] = 0.0F;    b_r[36] = 0.0F;    b_r[45] = 0.0F;    b_r[54] = 0.0F;    b_r[63] = 0.0F;    b_r[72] = 0.0F;    b_r[1] = 0.0F;    b_r[10] = r[0];    b_r[19] = 0.0F;    b_r[28] = 0.0F;    b_r[37] = 0.0F;    b_r[46] = 0.0F;    b_r[55] = 0.0F;    b_r[64] = 0.0F;    b_r[73] = 0.0F;    b_r[2] = 0.0F;    b_r[11] = 0.0F;    b_r[20] = r[0];    b_r[29] = 0.0F;    b_r[38] = 0.0F;    b_r[47] = 0.0F;    b_r[56] = 0.0F;    b_r[65] = 0.0F;    b_r[74] = 0.0F;    b_r[3] = 0.0F;    b_r[12] = 0.0F;    b_r[21] = 0.0F;    b_r[30] = r[1];    b_r[39] = 0.0F;    b_r[48] = 0.0F;    b_r[57] = 0.0F;    b_r[66] = 0.0F;    b_r[75] = 0.0F;    b_r[4] = 0.0F;    b_r[13] = 0.0F;    b_r[22] = 0.0F;    b_r[31] = 0.0F;    b_r[40] = r[1];    b_r[49] = 0.0F;    b_r[58] = 0.0F;    b_r[67] = 0.0F;    b_r[76] = 0.0F;    b_r[5] = 0.0F;    b_r[14] = 0.0F;    b_r[23] = 0.0F;    b_r[32] = 0.0F;    b_r[41] = 0.0F;    b_r[50] = r[1];    b_r[59] = 0.0F;    b_r[68] = 0.0F;    b_r[77] = 0.0F;    b_r[6] = 0.0F;    b_r[15] = 0.0F;    b_r[24] = 0.0F;    b_r[33] = 0.0F;    b_r[42] = 0.0F;    b_r[51] = 0.0F;    b_r[60] = r[2];    b_r[69] = 0.0F;    b_r[78] = 0.0F;    b_r[7] = 0.0F;    b_r[16] = 0.0F;    b_r[25] = 0.0F;    b_r[34] = 0.0F;    b_r[43] = 0.0F;    b_r[52] = 0.0F;    b_r[61] = 0.0F;    b_r[70] = r[2];    b_r[79] = 0.0F;    b_r[8] = 0.0F;    b_r[17] = 0.0F;    b_r[26] = 0.0F;    b_r[35] = 0.0F;    b_r[44] = 0.0F;    b_r[53] = 0.0F;    b_r[62] = 0.0F;    b_r[71] = 0.0F;    b_r[80] = r[2];    for (i = 0; i < 9; i++) {      for (i0 = 0; i0 < 9; i0++) {        fv1[i0 + 9 * i] = fv0[i0 + 9 * i] + b_r[i0 + 9 * i];      }    }

fv1[99]=fv0[99]+r0000r1000r2=HkPkHTk+R

    /*矩 阵 除 法 ,计算出卡尔曼增益*/    mrdivide(b_P_apriori, fv1, K_k);

Kk[129]T=K_K[912]=b_P_apriori[912]fv1[99]

/* x_aposteriori=x_apriori+K_k*y_k; */    for (i = 0; i < 9; i++) {      f0 = 0.0F;      for (i0 = 0; i0 < 12; i0++) {        f0 += (real32_T)iv2[i + 9 * i0] * x_apriori[i0];      }      O[i] = z[i] - f0;    }    for (i = 0; i < 12; i++) {      f0 = 0.0F;      for (i0 = 0; i0 < 9; i0++) {        f0 += K_k[i + 12 * i0] * O[i0];      }      x_aposteriori[i] = x_apriori[i] + f0;    }

计算状态后验估计:

O[19]=z[19]x_apriori[112]HT[129]
得到:
x^k[121]T=x_aposteriori[112]
=x_apriori[112]+O[19]K_K[912]

    /* 'attitudeKalmanfilter:137' P_aposteriori=(eye(12)-K_k*H_k)*P_apriori; */    b_eye(dv1);    for (i = 0; i < 12; i++) {      for (i0 = 0; i0 < 12; i0++) {        f0 = 0.0F;        for (i1 = 0; i1 < 9; i1++) {          f0 += K_k[i + 12 * i1] * (real32_T)iv2[i1 + 9 * i0];        }        b_A_lin[i + 12 * i0] = (real32_T)dv1[i + 12 * i0] - f0;      }    }    for (i = 0; i < 12; i++) {      for (i0 = 0; i0 < 12; i0++) {        P_aposteriori[i + 12 * i0] = 0.0F;        for (i1 = 0; i1 < 12; i1++) {          P_aposteriori[i + 12 * i0] += b_A_lin[i + 12 * i1] * P_apriori[i1 + 12            * i0];        }      }    }  }

计算方差后验估计:

b_A_lin[1212]=I0000I0000I0000IHTkK_K
得到:
Pk[1212]T=P_aposteriori[1212]
=P_apriori[1212]b_A_lin[1212];

到此就把所有的量都计算出来了!

下面几种情形为某个传感器未更新的情况,只需改变H矩阵和测量噪声方差矩阵即可,其余运算均类似!

else {    /* 'attitudeKalmanfilter:138' else */    /* 'attitudeKalmanfilter:139' if updateVect(1)==1&&updateVect(2)==0&&updateVect(3)==0 */    if ((updateVect[0] == 1) && (updateVect[1] == 0) && (updateVect[2] == 0)) {      /* 'attitudeKalmanfilter:141' R=[r(1),0,0; */      /* 'attitudeKalmanfilter:142'             0,r(1),0; */      /* 'attitudeKalmanfilter:143'             0,0,r(1)]; */      /* observation matrix */      /* 'attitudeKalmanfilter:146' H_k=[  E,     Z,      Z,    Z]; */      /* 'attitudeKalmanfilter:148' y_k=z(1:3)-H_k(1:3,1:12)*x_apriori; */      /* 'attitudeKalmanfilter:150' S_k=H_k(1:3,1:12)*P_apriori*H_k(1:3,1:12)'+R(1:3,1:3); */      /* 'attitudeKalmanfilter:151' K_k=(P_apriori*H_k(1:3,1:12)'/(S_k)); */      for (i = 0; i < 12; i++) {        for (i0 = 0; i0 < 3; i0++) {          c_P_apriori[i + 12 * i0] = 0.0F;          for (i1 = 0; i1 < 12; i1++) {            c_P_apriori[i + 12 * i0] += P_apriori[i + 12 * i1] * (real32_T)              iv3[i1 + 12 * i0];          }        }      }      for (i = 0; i < 3; i++) {        for (i0 = 0; i0 < 12; i0++) {          fv2[i + 3 * i0] = 0.0F;          for (i1 = 0; i1 < 12; i1++) {            fv2[i + 3 * i0] += (real32_T)iv4[i + 3 * i1] * P_apriori[i1 + 12 *              i0];          }        }        for (i0 = 0; i0 < 3; i0++) {          O[i + 3 * i0] = 0.0F;          for (i1 = 0; i1 < 12; i1++) {            O[i + 3 * i0] += fv2[i + 3 * i1] * (real32_T)iv3[i1 + 12 * i0];          }        }      }      c_r[0] = r[0];      c_r[3] = 0.0F;      c_r[6] = 0.0F;      c_r[1] = 0.0F;      c_r[4] = r[0];      c_r[7] = 0.0F;      c_r[2] = 0.0F;      c_r[5] = 0.0F;      c_r[8] = r[0];      for (i = 0; i < 3; i++) {        for (i0 = 0; i0 < 3; i0++) {          a[i0 + 3 * i] = O[i0 + 3 * i] + c_r[i0 + 3 * i];        }      }      b_mrdivide(c_P_apriori, a, b_K_k);      /* 'attitudeKalmanfilter:154' x_aposteriori=x_apriori+K_k*y_k; */      for (i = 0; i < 3; i++) {        f0 = 0.0F;        for (i0 = 0; i0 < 12; i0++) {          f0 += (real32_T)iv4[i + 3 * i0] * x_apriori[i0];        }        x_n_b[i] = z[i] - f0;      }      for (i = 0; i < 12; i++) {        f0 = 0.0F;        for (i0 = 0; i0 < 3; i0++) {          f0 += b_K_k[i + 12 * i0] * x_n_b[i0];        }        x_aposteriori[i] = x_apriori[i] + f0;      }      /* 'attitudeKalmanfilter:155' P_aposteriori=(eye(12)-K_k*H_k(1:3,1:12))*P_apriori; */      b_eye(dv1);      for (i = 0; i < 12; i++) {        for (i0 = 0; i0 < 12; i0++) {          f0 = 0.0F;          for (i1 = 0; i1 < 3; i1++) {            f0 += b_K_k[i + 12 * i1] * (real32_T)iv4[i1 + 3 * i0];          }          b_A_lin[i + 12 * i0] = (real32_T)dv1[i + 12 * i0] - f0;        }      }      for (i = 0; i < 12; i++) {        for (i0 = 0; i0 < 12; i0++) {          P_aposteriori[i + 12 * i0] = 0.0F;          for (i1 = 0; i1 < 12; i1++) {            P_aposteriori[i + 12 * i0] += b_A_lin[i + 12 * i1] * P_apriori[i1 +              12 * i0];          }        }      }    } else {      /* 'attitudeKalmanfilter:156' else */      /* 'attitudeKalmanfilter:157' if  updateVect(1)==1&&updateVect(2)==1&&updateVect(3)==0 */      if ((updateVect[0] == 1) && (updateVect[1] == 1) && (updateVect[2] == 0))      {        /* 'attitudeKalmanfilter:158' if z(6)<4 || z(5)>15 */        if ((z[5] < 4.0F) || (z[4] > 15.0F)) {          /* 'attitudeKalmanfilter:159' r(2)=10000; */          r[1] = 10000.0F;        }        /* 'attitudeKalmanfilter:162'              R=[r(1),0,0,0,0,0; */        /* 'attitudeKalmanfilter:163'                 0,r(1),0,0,0,0; */        /* 'attitudeKalmanfilter:164'                 0,0,r(1),0,0,0; */        /* 'attitudeKalmanfilter:165'                 0,0,0,r(2),0,0; */        /* 'attitudeKalmanfilter:166'                 0,0,0,0,r(2),0; */        /* 'attitudeKalmanfilter:167'                 0,0,0,0,0,r(2)]; */        /* observation matrix */        /* 'attitudeKalmanfilter:170' H_k=[  E,     Z,      Z,    Z; */        /* 'attitudeKalmanfilter:171'                 Z,     Z,      E,    Z]; */        /* 'attitudeKalmanfilter:173' y_k=z(1:6)-H_k(1:6,1:12)*x_apriori; */        /* 'attitudeKalmanfilter:175' S_k=H_k(1:6,1:12)*P_apriori*H_k(1:6,1:12)'+R(1:6,1:6); */        /* 'attitudeKalmanfilter:176' K_k=(P_apriori*H_k(1:6,1:12)'/(S_k)); */        for (i = 0; i < 12; i++) {          for (i0 = 0; i0 < 6; i0++) {            d_P_apriori[i + 12 * i0] = 0.0F;            for (i1 = 0; i1 < 12; i1++) {              d_P_apriori[i + 12 * i0] += P_apriori[i + 12 * i1] * (real32_T)                iv5[i1 + 12 * i0];            }          }        }        for (i = 0; i < 6; i++) {          for (i0 = 0; i0 < 12; i0++) {            c_K_k[i + 6 * i0] = 0.0F;            for (i1 = 0; i1 < 12; i1++) {              c_K_k[i + 6 * i0] += (real32_T)iv6[i + 6 * i1] * P_apriori[i1 + 12                * i0];            }          }          for (i0 = 0; i0 < 6; i0++) {            fv2[i + 6 * i0] = 0.0F;            for (i1 = 0; i1 < 12; i1++) {              fv2[i + 6 * i0] += c_K_k[i + 6 * i1] * (real32_T)iv5[i1 + 12 * i0];            }          }        }        b_K_k[0] = r[0];        b_K_k[6] = 0.0F;        b_K_k[12] = 0.0F;        b_K_k[18] = 0.0F;        b_K_k[24] = 0.0F;        b_K_k[30] = 0.0F;        b_K_k[1] = 0.0F;        b_K_k[7] = r[0];        b_K_k[13] = 0.0F;        b_K_k[19] = 0.0F;        b_K_k[25] = 0.0F;        b_K_k[31] = 0.0F;        b_K_k[2] = 0.0F;        b_K_k[8] = 0.0F;        b_K_k[14] = r[0];        b_K_k[20] = 0.0F;        b_K_k[26] = 0.0F;        b_K_k[32] = 0.0F;        b_K_k[3] = 0.0F;        b_K_k[9] = 0.0F;        b_K_k[15] = 0.0F;        b_K_k[21] = r[1];        b_K_k[27] = 0.0F;        b_K_k[33] = 0.0F;        b_K_k[4] = 0.0F;        b_K_k[10] = 0.0F;        b_K_k[16] = 0.0F;        b_K_k[22] = 0.0F;        b_K_k[28] = r[1];        b_K_k[34] = 0.0F;        b_K_k[5] = 0.0F;        b_K_k[11] = 0.0F;        b_K_k[17] = 0.0F;        b_K_k[23] = 0.0F;        b_K_k[29] = 0.0F;        b_K_k[35] = r[1];        for (i = 0; i < 6; i++) {          for (i0 = 0; i0 < 6; i0++) {            c_P_apriori[i0 + 6 * i] = fv2[i0 + 6 * i] + b_K_k[i0 + 6 * i];          }        }        c_mrdivide(d_P_apriori, c_P_apriori, c_K_k);        /* 'attitudeKalmanfilter:179' x_aposteriori=x_apriori+K_k*y_k; */        for (i = 0; i < 6; i++) {          f0 = 0.0F;          for (i0 = 0; i0 < 12; i0++) {            f0 += (real32_T)iv6[i + 6 * i0] * x_apriori[i0];          }          b_z[i] = z[i] - f0;        }        for (i = 0; i < 12; i++) {          f0 = 0.0F;          for (i0 = 0; i0 < 6; i0++) {            f0 += c_K_k[i + 12 * i0] * b_z[i0];          }          x_aposteriori[i] = x_apriori[i] + f0;        }        /* 'attitudeKalmanfilter:180' P_aposteriori=(eye(12)-K_k*H_k(1:6,1:12))*P_apriori; */        b_eye(dv1);        for (i = 0; i < 12; i++) {          for (i0 = 0; i0 < 12; i0++) {            f0 = 0.0F;            for (i1 = 0; i1 < 6; i1++) {              f0 += c_K_k[i + 12 * i1] * (real32_T)iv6[i1 + 6 * i0];            }            b_A_lin[i + 12 * i0] = (real32_T)dv1[i + 12 * i0] - f0;          }        }        for (i = 0; i < 12; i++) {          for (i0 = 0; i0 < 12; i0++) {            P_aposteriori[i + 12 * i0] = 0.0F;            for (i1 = 0; i1 < 12; i1++) {              P_aposteriori[i + 12 * i0] += b_A_lin[i + 12 * i1] * P_apriori[i1                + 12 * i0];            }          }        }      } else {        /* 'attitudeKalmanfilter:181' else */        /* 'attitudeKalmanfilter:182' if  updateVect(1)==1&&updateVect(2)==0&&updateVect(3)==1 */        if ((updateVect[0] == 1) && (updateVect[1] == 0) && (updateVect[2] == 1))        {          /* 'attitudeKalmanfilter:183'                  R=[r(1),0,0,0,0,0; */          /* 'attitudeKalmanfilter:184'                     0,r(1),0,0,0,0; */          /* 'attitudeKalmanfilter:185'                     0,0,r(1),0,0,0; */          /* 'attitudeKalmanfilter:186'                     0,0,0,r(3),0,0; */          /* 'attitudeKalmanfilter:187'                     0,0,0,0,r(3),0; */          /* 'attitudeKalmanfilter:188'                     0,0,0,0,0,r(3)]; */          /* observation matrix */          /* 'attitudeKalmanfilter:191' H_k=[  E,     Z,      Z,    Z; */          /* 'attitudeKalmanfilter:192'                     Z,     Z,      Z,    E]; */          /* 'attitudeKalmanfilter:194' y_k=[z(1:3);z(7:9)]-H_k(1:6,1:12)*x_apriori; */          /* 'attitudeKalmanfilter:196' S_k=H_k(1:6,1:12)*P_apriori*H_k(1:6,1:12)'+R(1:6,1:6); */          /* 'attitudeKalmanfilter:197' K_k=(P_apriori*H_k(1:6,1:12)'/(S_k)); */          for (i = 0; i < 12; i++) {            for (i0 = 0; i0 < 6; i0++) {              d_P_apriori[i + 12 * i0] = 0.0F;              for (i1 = 0; i1 < 12; i1++) {                d_P_apriori[i + 12 * i0] += P_apriori[i + 12 * i1] * (real32_T)                  iv7[i1 + 12 * i0];              }            }          }          for (i = 0; i < 6; i++) {            for (i0 = 0; i0 < 12; i0++) {              c_K_k[i + 6 * i0] = 0.0F;              for (i1 = 0; i1 < 12; i1++) {                c_K_k[i + 6 * i0] += (real32_T)iv8[i + 6 * i1] * P_apriori[i1 +                  12 * i0];              }            }            for (i0 = 0; i0 < 6; i0++) {              fv2[i + 6 * i0] = 0.0F;              for (i1 = 0; i1 < 12; i1++) {                fv2[i + 6 * i0] += c_K_k[i + 6 * i1] * (real32_T)iv7[i1 + 12 *                  i0];              }            }          }          b_K_k[0] = r[0];          b_K_k[6] = 0.0F;          b_K_k[12] = 0.0F;          b_K_k[18] = 0.0F;          b_K_k[24] = 0.0F;          b_K_k[30] = 0.0F;          b_K_k[1] = 0.0F;          b_K_k[7] = r[0];          b_K_k[13] = 0.0F;          b_K_k[19] = 0.0F;          b_K_k[25] = 0.0F;          b_K_k[31] = 0.0F;          b_K_k[2] = 0.0F;          b_K_k[8] = 0.0F;          b_K_k[14] = r[0];          b_K_k[20] = 0.0F;          b_K_k[26] = 0.0F;          b_K_k[32] = 0.0F;          b_K_k[3] = 0.0F;          b_K_k[9] = 0.0F;          b_K_k[15] = 0.0F;          b_K_k[21] = r[2];          b_K_k[27] = 0.0F;          b_K_k[33] = 0.0F;          b_K_k[4] = 0.0F;          b_K_k[10] = 0.0F;          b_K_k[16] = 0.0F;          b_K_k[22] = 0.0F;          b_K_k[28] = r[2];          b_K_k[34] = 0.0F;          b_K_k[5] = 0.0F;          b_K_k[11] = 0.0F;          b_K_k[17] = 0.0F;          b_K_k[23] = 0.0F;          b_K_k[29] = 0.0F;          b_K_k[35] = r[2];          for (i = 0; i < 6; i++) {            for (i0 = 0; i0 < 6; i0++) {              c_P_apriori[i0 + 6 * i] = fv2[i0 + 6 * i] + b_K_k[i0 + 6 * i];            }          }          c_mrdivide(d_P_apriori, c_P_apriori, c_K_k);          /* 'attitudeKalmanfilter:200' x_aposteriori=x_apriori+K_k*y_k; */          for (i = 0; i < 3; i++) {            b_z[i] = z[i];          }          for (i = 0; i < 3; i++) {            b_z[i + 3] = z[i + 6];          }          for (i = 0; i < 6; i++) {            fv3[i] = 0.0F;            for (i0 = 0; i0 < 12; i0++) {              fv3[i] += (real32_T)iv8[i + 6 * i0] * x_apriori[i0];            }            c_z[i] = b_z[i] - fv3[i];          }          for (i = 0; i < 12; i++) {            f0 = 0.0F;            for (i0 = 0; i0 < 6; i0++) {              f0 += c_K_k[i + 12 * i0] * c_z[i0];            }            x_aposteriori[i] = x_apriori[i] + f0;          }          /* 'attitudeKalmanfilter:201' P_aposteriori=(eye(12)-K_k*H_k(1:6,1:12))*P_apriori; */          b_eye(dv1);          for (i = 0; i < 12; i++) {            for (i0 = 0; i0 < 12; i0++) {              f0 = 0.0F;              for (i1 = 0; i1 < 6; i1++) {                f0 += c_K_k[i + 12 * i1] * (real32_T)iv8[i1 + 6 * i0];              }              b_A_lin[i + 12 * i0] = (real32_T)dv1[i + 12 * i0] - f0;            }          }          for (i = 0; i < 12; i++) {            for (i0 = 0; i0 < 12; i0++) {              P_aposteriori[i + 12 * i0] = 0.0F;              for (i1 = 0; i1 < 12; i1++) {                P_aposteriori[i + 12 * i0] += b_A_lin[i + 12 * i1] *                  P_apriori[i1 + 12 * i0];              }            }          }        } else {          /* 'attitudeKalmanfilter:202' else */          /* 'attitudeKalmanfilter:203' x_aposteriori=x_apriori; */          for (i = 0; i < 12; i++) {            x_aposteriori[i] = x_apriori[i];          }          /* 'attitudeKalmanfilter:204' P_aposteriori=P_apriori; */          memcpy(&P_aposteriori[0], &P_apriori[0], 144U * sizeof(real32_T));        }      }    }  }

至此,EKF解算姿态过程全部结束,下面从姿态矩阵中提取欧拉角。其实本质就是计算新的余弦矩阵,然后根据下面的公式计算欧拉角

Rot_matrix=r0r3r6r1r4r7r2r5r8
ϕ=arctan[r7r8]
θ=arcsin[r6]
ψ=arcsin[r3r0]

  /* % euler anglels extraction */  /* 'attitudeKalmanfilter:213' z_n_b = -x_aposteriori(7:9)./norm(x_aposteriori(7:9)); */  for (i = 0; i < 3; i++) {    x_n_b[i] = -x_aposteriori[i + 6];  }  rdivide(x_n_b, norm(*(real32_T (*)[3])&x_aposteriori[6]), z_n_b);  /* 'attitudeKalmanfilter:214' m_n_b = x_aposteriori(10:12)./norm(x_aposteriori(10:12)); */  rdivide(*(real32_T (*)[3])&x_aposteriori[9], norm(*(real32_T (*)[3])&           x_aposteriori[9]), wak);  /* 'attitudeKalmanfilter:216' y_n_b=cross(z_n_b,m_n_b); */  for (i = 0; i < 3; i++) {    x_n_b[i] = wak[i];  }  cross(z_n_b, x_n_b, wak);  /* 'attitudeKalmanfilter:217' y_n_b=y_n_b./norm(y_n_b); */  for (i = 0; i < 3; i++) {    x_n_b[i] = wak[i];  }  rdivide(x_n_b, norm(wak), wak);  /* 'attitudeKalmanfilter:219' x_n_b=(cross(y_n_b,z_n_b)); */  cross(wak, z_n_b, x_n_b);  /* 'attitudeKalmanfilter:220' x_n_b=x_n_b./norm(x_n_b); */  for (i = 0; i < 3; i++) {    b_x_aposteriori_k[i] = x_n_b[i];  }  rdivide(b_x_aposteriori_k, norm(x_n_b), x_n_b);  /* 'attitudeKalmanfilter:226' Rot_matrix=[x_n_b,y_n_b,z_n_b]; */  for (i = 0; i < 3; i++) {    Rot_matrix[i] = x_n_b[i];    Rot_matrix[3 + i] = wak[i];    Rot_matrix[6 + i] = z_n_b[i];  }  /* 'attitudeKalmanfilter:230' phi=atan2(Rot_matrix(2,3),Rot_matrix(3,3)); */  /* 'attitudeKalmanfilter:231' theta=-asin(Rot_matrix(1,3)); */  /* 'attitudeKalmanfilter:232' psi=atan2(Rot_matrix(1,2),Rot_matrix(1,1)); */  /* 'attitudeKalmanfilter:233' eulerAngles=[phi;theta;psi]; */  eulerAngles[0] = rt_atan2f_snf(Rot_matrix[7], Rot_matrix[8]);  eulerAngles[1] = -(real32_T)asin(Rot_matrix[6]);  eulerAngles[2] = rt_atan2f_snf(Rot_matrix[3], Rot_matrix[0]);}/* End of code generation (attitudeKalmanfilter.c) */

3.下一步

把EKF估计姿态原理和具体算法细节搞清楚之后就可以移植到自己的工程上了,完成后把代码放上来。

7 1