Android Volley完全解析(四),带你从源码的角度理解Volley

来源:互联网 发布:淘宝分销平台在哪里 编辑:程序博客网 时间:2024/06/07 10:46

转载请注明出处: http://blog.csdn.net/guolin_blog/article/details/17656437

经过前三篇文章的学习,Volley的用法我们已经掌握的差不多了,但是对于Volley的工作原理,恐怕有很多朋友还不是很清楚。因此,本篇文章中我们就来一起阅读一下Volley的源码,将它的工作流程整体地梳理一遍。同时,这也是Volley系列的最后一篇文章了。

其实,Volley的官方文档中本身就附有了一张Volley的工作流程图,如下图所示。

多数朋友突然看到一张这样的图,应该会和我一样,感觉一头雾水吧?没错,目前我们对Volley背后的工作原理还没有一个概念性的理解,直接就来看这张图自然会有些吃力。不过没关系,下面我们就去分析一下Volley的源码,之后再重新来看这张图就会好理解多了。

说起分析源码,那么应该从哪儿开始看起呢?这就要回顾一下Volley的用法了,还记得吗,使用Volley的第一步,首先要调用 Volley.newRequestQueue(context)方法来获取一个RequestQueue对象,那么我们自然要从这个方法开始看起了,代码如下所示:

public static RequestQueue newRequestQueue(Context context) {    return newRequestQueue(context, null);}
这个方法仅仅只有一行代码,只是调用了 newRequestQueue()的方法重载,并给第二个参数传入null。那我们看下带有两个参数的 newRequestQueue()方法中的代码,如下所示:
public static RequestQueue newRequestQueue(Context context, HttpStack stack) {  File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR);  String userAgent = "volley/0";  try {    String packageName = context.getPackageName();    PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0);    userAgent = packageName + "/" + info.versionCode;  } catch (NameNotFoundException e) {  }  if (stack == null) {    if (Build.VERSION.SDK_INT >= 9) {      stack = new HurlStack();    } else {      stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));    }  }  Network network = new BasicNetwork(stack);  RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network);  queue.start();  return queue;}
可以看到,这里在第10行判断如果stack是等于null的,则去创建一个HttpStack对象,这里会判断如果手机系统版本号是大于9的,则创建一个HurlStack的实例,否则就创建一个HttpClientStack的实例。实际上 HurlStack的内部就是使用HttpURLConnection进行网络通讯的,而 HttpClientStack的内部则是使用HttpClient进行网络通讯的,这里为什么这样选择呢?可以参考我之前翻译的一篇文章 Android访问网络,使用HttpURLConnection还是HttpClient?

创建好了HttpStack之后,接下来又创建了一个Network对象,它是用于根据传入的HttpStack对象来处理网络请求的,紧接着new出一个RequestQueue对象,并调用它的start()方法进行启动,然后将 RequestQueue返回,这样 newRequestQueue()的方法就执行结束了。

那么 RequestQueue的 start()方法内部到底执行了什么东西呢?我们跟进去瞧一瞧:

public void start() {  stop();  // Make sure any currently running dispatchers are stopped.  // Create the cache dispatcher and start it.  mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);  mCacheDispatcher.start();  // Create network dispatchers (and corresponding threads) up to the pool size.  for (int i = 0; i < mDispatchers.length; i++) {    NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,        mCache, mDelivery);    mDispatchers[i] = networkDispatcher;    networkDispatcher.start();  }}
这里先是创建了一个CacheDispatcher的实例,然后调用了它的start()方法,接着在一个for循环里去创建NetworkDispatcher的实例,并分别调用它们的start()方法。这里的CacheDispatcher和NetworkDispatcher都是继承自Thread的,而默认情况下for循环会执行四次,也就是说当调用了Volley.newRequestQueue(context)之后,就会有五个线程一直在后台运行,不断等待网络请求的到来, 其中 CacheDispatcher是缓存线程,NetworkDispatcher是网络请求线程。

得到了 RequestQueue之后,我们只需要构建出相应的Request,然后调用 RequestQueue的add()方法将Request传入就可以完成网络请求操作了,那么不用说,add()方法的内部肯定有着非常复杂的逻辑,我们来一起看一下:

public <T> Request<T> add(Request<T> request) {  // Tag the request as belonging to this queue and add it to the set of current requests.  request.setRequestQueue(this);  synchronized (mCurrentRequests) {    mCurrentRequests.add(request);  }  // Process requests in the order they are added.  request.setSequence(getSequenceNumber());  request.addMarker("add-to-queue");  // If the request is uncacheable, skip the cache queue and go straight to the network.  if (!request.shouldCache()) {    mNetworkQueue.add(request);    return request;  }  // Insert request into stage if there's already a request with the same cache key in flight.  synchronized (mWaitingRequests) {    String cacheKey = request.getCacheKey();    if (mWaitingRequests.containsKey(cacheKey)) {      // There is already a request in flight. Queue up.      Queue<Request<?>> stagedRequests = mWaitingRequests.get(cacheKey);      if (stagedRequests == null) {        stagedRequests = new LinkedList<Request<?>>();      }      stagedRequests.add(request);      mWaitingRequests.put(cacheKey, stagedRequests);      if (VolleyLog.DEBUG) {        VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey);      }    } else {      // Insert 'null' queue for this cacheKey, indicating there is now a request in      // flight.      mWaitingRequests.put(cacheKey, null);      mCacheQueue.add(request);    }    return request;  }}
可以看到,在第11行的时候会判断当前的请求是否可以缓存,如果不能缓存则在第12行直接将这条请求加入网络请求队列,可以缓存的话则在第33行将这条请求加入缓存队列。在默认情况下,每条请求都是可以缓存的,当然我们也可以调用Request的setShouldCache(false)方法来改变这一默认行为。

OK,那么既然默认每条请求都是可以缓存的,自然就被添加到了缓存队列中,于是一直在后台等待的缓存线程就要开始运行起来了,我们看下CacheDispatcher中的run()方法,代码如下所示:

public class CacheDispatcher extends Thread {  ……  @Override  public void run() {    if (DEBUG) VolleyLog.v("start new dispatcher");    Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);    // Make a blocking call to initialize the cache.    mCache.initialize();    while (true) {      try {        // Get a request from the cache triage queue, blocking until        // at least one is available.        final Request<?> request = mCacheQueue.take();        request.addMarker("cache-queue-take");        // If the request has been canceled, don't bother dispatching it.        if (request.isCanceled()) {          request.finish("cache-discard-canceled");          continue;        }        // Attempt to retrieve this item from cache.        Cache.Entry entry = mCache.get(request.getCacheKey());        if (entry == null) {          request.addMarker("cache-miss");          // Cache miss; send off to the network dispatcher.          mNetworkQueue.put(request);          continue;        }        // If it is completely expired, just send it to the network.        if (entry.isExpired()) {          request.addMarker("cache-hit-expired");          request.setCacheEntry(entry);          mNetworkQueue.put(request);          continue;        }        // We have a cache hit; parse its data for delivery back to the request.        request.addMarker("cache-hit");        Response<?> response = request.parseNetworkResponse(            new NetworkResponse(entry.data, entry.responseHeaders));        request.addMarker("cache-hit-parsed");        if (!entry.refreshNeeded()) {          // Completely unexpired cache hit. Just deliver the response.          mDelivery.postResponse(request, response);        } else {          // Soft-expired cache hit. We can deliver the cached response,          // but we need to also send the request to the network for          // refreshing.          request.addMarker("cache-hit-refresh-needed");          request.setCacheEntry(entry);          // Mark the response as intermediate.          response.intermediate = true;          // Post the intermediate response back to the user and have          // the delivery then forward the request along to the network.          mDelivery.postResponse(request, response, new Runnable() {            @Override            public void run() {              try {                mNetworkQueue.put(request);              } catch (InterruptedException e) {                // Not much we can do about this.              }            }          });        }      } catch (InterruptedException e) {        // We may have been interrupted because it was time to quit.        if (mQuit) {          return;        }        continue;      }    }  }}
代码有点长,我们只挑重点看。首先在11行可以看到一个while(true)循环,说明缓存线程始终是在运行的,接着在第23行会尝试从缓存当中取出响应结果,如何为空的话则把这条请求加入到网络请求队列中,如果不为空的话再判断该缓存是否已过期,如果已经过期了则同样把这条请求加入到网络请求队列中,否则就认为不需要重发网络请求,直接使用缓存中的数据即可。之后会在第39行调用Request的 parseNetworkResponse()方法来对数据进行解析,再往后就是将解析出来的数据进行回调了,这部分代码我们先跳过,因为它的逻辑和NetworkDispatcher后半部分的逻辑是基本相同的,那么我们等下合并在一起看就好了,先来看一下NetworkDispatcher中是怎么处理网络请求队列的,代码如下所示:
public class NetworkDispatcher extends Thread {  ……  @Override  public void run() {    Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);    Request<?> request;    while (true) {      try {        // Take a request from the queue.        request = mQueue.take();      } catch (InterruptedException e) {        // We may have been interrupted because it was time to quit.        if (mQuit) {          return;        }        continue;      }      try {        request.addMarker("network-queue-take");        // If the request was cancelled already, do not perform the        // network request.        if (request.isCanceled()) {          request.finish("network-discard-cancelled");          continue;        }        addTrafficStatsTag(request);        // Perform the network request.        NetworkResponse networkResponse = mNetwork.performRequest(request);        request.addMarker("network-http-complete");        // If the server returned 304 AND we delivered a response already,        // we're done -- don't deliver a second identical response.        if (networkResponse.notModified && request.hasHadResponseDelivered()) {          request.finish("not-modified");          continue;        }        // Parse the response here on the worker thread.        Response<?> response = request.parseNetworkResponse(networkResponse);        request.addMarker("network-parse-complete");        // Write to cache if applicable.        // TODO: Only update cache metadata instead of entire record for 304s.        if (request.shouldCache() && response.cacheEntry != null) {          mCache.put(request.getCacheKey(), response.cacheEntry);          request.addMarker("network-cache-written");        }        // Post the response back.        request.markDelivered();        mDelivery.postResponse(request, response);      } catch (VolleyError volleyError) {        parseAndDeliverNetworkError(request, volleyError);      } catch (Exception e) {        VolleyLog.e(e, "Unhandled exception %s", e.toString());        mDelivery.postError(request, new VolleyError(e));      }    }  }}
同样地,在第7行我们看到了类似的while(true)循环,说明网络请求线程也是在不断运行的。在第28行的时候会调用Network的performRequest()方法来去发送网络请求,而Network是一个接口,这里具体的实现是BasicNetwork,我们来看下它的 performRequest()方法,如下所示:
public class BasicNetwork implements Network {  ……  @Override  public NetworkResponse performRequest(Request<?> request) throws VolleyError {    long requestStart = SystemClock.elapsedRealtime();    while (true) {      HttpResponse httpResponse = null;      byte[] responseContents = null;      Map<String, String> responseHeaders = new HashMap<String, String>();      try {        // Gather headers.        Map<String, String> headers = new HashMap<String, String>();        addCacheHeaders(headers, request.getCacheEntry());        httpResponse = mHttpStack.performRequest(request, headers);        StatusLine statusLine = httpResponse.getStatusLine();        int statusCode = statusLine.getStatusCode();        responseHeaders = convertHeaders(httpResponse.getAllHeaders());        // Handle cache validation.        if (statusCode == HttpStatus.SC_NOT_MODIFIED) {          return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED,              request.getCacheEntry() == null ? null : request.getCacheEntry().data,              responseHeaders, true);        }        // Some responses such as 204s do not have content.  We must check.        if (httpResponse.getEntity() != null) {          responseContents = entityToBytes(httpResponse.getEntity());        } else {          // Add 0 byte response as a way of honestly representing a          // no-content request.          responseContents = new byte[0];        }        // if the request is slow, log it.        long requestLifetime = SystemClock.elapsedRealtime() - requestStart;        logSlowRequests(requestLifetime, request, responseContents, statusLine);        if (statusCode < 200 || statusCode > 299) {          throw new IOException();        }        return new NetworkResponse(statusCode, responseContents, responseHeaders, false);      } catch (Exception e) {        ……      }    }  }}

这段方法中大多都是一些网络请求细节方面的东西,我们并不需要太多关心,需要注意的是在第14行调用了HttpStack的performRequest()方法,这里的HttpStack就是在一开始调用newRequestQueue()方法是创建的实例,默认情况下如果系统版本号大于9就创建的HurlStack对象,否则创建HttpClientStack对象。前面已经说过,这两个对象的内部实际就是分别使用HttpURLConnection和HttpClient来发送网络请求的,我们就不再跟进去阅读了,之后会将服务器返回的数据组装成一个NetworkResponse对象进行返回。

在NetworkDispatcher中收到了 NetworkResponse这个返回值后又会调用Request的parseNetworkResponse()方法来解析 NetworkResponse中的数据,以及将数据写入到缓存,这个方法的实现是交给Request的子类来完成的,因为不同种类的Request解析的方式也肯定不同。还记得我们在上一篇文章中学习的自定义Request的方式吗?其中 parseNetworkResponse()这个方法就是必须要重写的。

在解析完了 NetworkResponse中的数据之后,又会调用ExecutorDelivery的postResponse()方法来回调解析出的数据,代码如下所示:

public void postResponse(Request<?> request, Response<?> response, Runnable runnable) {    request.markDelivered();    request.addMarker("post-response");    mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable));}
其中,在mResponsePoster的execute()方法中传入了一个ResponseDeliveryRunnable对象,就可以保证该对象中的run()方法就是在主线程当中运行的了,我们看下run()方法中的代码是什么样的:
private class ResponseDeliveryRunnable implements Runnable {  private final Request mRequest;  private final Response mResponse;  private final Runnable mRunnable;  public ResponseDeliveryRunnable(Request request, Response response, Runnable runnable) {    mRequest = request;    mResponse = response;    mRunnable = runnable;  }  @SuppressWarnings("unchecked")  @Override  public void run() {    // If this request has canceled, finish it and don't deliver.    if (mRequest.isCanceled()) {      mRequest.finish("canceled-at-delivery");      return;    }    // Deliver a normal response or error, depending.    if (mResponse.isSuccess()) {      mRequest.deliverResponse(mResponse.result);    } else {      mRequest.deliverError(mResponse.error);    }    // If this is an intermediate response, add a marker, otherwise we're done    // and the request can be finished.    if (mResponse.intermediate) {      mRequest.addMarker("intermediate-response");    } else {      mRequest.finish("done");    }    // If we have been provided a post-delivery runnable, run it.    if (mRunnable != null) {      mRunnable.run();    }   }}

代码虽然不多,但我们并不需要行行阅读,抓住重点看即可。其中在第22行调用了Request的deliverResponse()方法,有没有感觉很熟悉?没错,这个就是我们在自定义Request时需要重写的另外一个方法,每一条网络请求的响应都是回调到这个方法中,最后我们再在这个方法中将响应的数据回调到Response.Listener的onResponse()方法中就可以了。

好了,到这里我们就把Volley的完整执行流程全部梳理了一遍,你是不是已经感觉已经很清晰了呢?对了,还记得在文章一开始的那张流程图吗,刚才还不能理解,现在我们再来重新看下这张图:

其中蓝色部分代表主线程,绿色部分代表缓存线程,橙色部分代表网络线程。我们在主线程中调用RequestQueue的add()方法来添加一条网络请求,这条请求会先被加入到缓存队列当中,如果发现可以找到相应的缓存结果就直接读取缓存并解析,然后回调给主线程。如果在缓存中没有找到结果,则将这条请求加入到网络请求队列中,然后处理发送HTTP请求,解析响应结果,写入缓存,并回调主线程。

怎么样,是不是感觉现在理解这张图已经变得轻松简单了?好了,到此为止我们就把Volley的用法和源码全部学习完了,相信你已经对Volley非常熟悉并可以将它应用到实际项目当中了,那么Volley完全解析系列的文章到此结束,感谢大家有耐心看到最后。

0 0
原创粉丝点击