龙格-库塔(Runge-Kutta)方法数学原理及实现

来源:互联网 发布:金蝶进销存源码 编辑:程序博客网 时间:2024/05/21 22:37

龙格-库塔(Runge-Kutta)方法

龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。该算法是构建在数学支持的基础之上的。


对于一阶精度的欧拉公式有:

yi+1=yi+hki

其中h为步长,则yi+1的表达式与y(xi+1)的Taylor展开式的前两项完全相同,即局部截断误差O(h2)
当用点xi处的斜率近似值k1与右端点xi+1处的斜率k2的算术平均值作为平均斜率k的近似值,那么就会得到二阶精度的改进欧拉公式:
yi+1=yi+h(k1+k2)

其中k1=f(xi,yi)k2=f(xi+h,yi+hk1)
依次类推,如果在区间[xi,xi+1]内多预估几个店上的斜率值k1,k2,,km,并用他们的加权平均数作为平均斜率k的近似值,显然能够构造出具有很高精度的高阶计数公式。
上述两组公式在形式删过的共同点:都是用f(x,y)在某些点上值得线性组合得出y(xi+1)的近似值yi+1,且增加计算的次数,可以提高截断误差的阶,他们的误差估计可以用f(x,y)xi处的Taylor展开来估计。


于是可考虑用函数f(x,y)在若干点上的函数值的线性组合老构造金斯公式,构造时要求近似公式在f(xi,yi)处的Taylor展开式与解y(x)xi处的Taylor展开式的前面几项重合,从而使金斯公式达到所需要的阶数。既避免求高阶导数,又提高了计算方法精度的阶数。或者说,在[xi,xi+1]这一步内计算多个点的斜率值,若够将其进行加权平均作为平均斜率,则可构造出更高精度的计算格式,这就是龙格-库塔(Runge-Kutta)方法。
一般的龙格-库塔法的形式为

这里写图片描述

称为P阶龙格-库塔方法。
其中ai,bij,cj为待定参数,要求上式yi+1在点(xi,yi)处作Taylor展开,通过相同项的系数确定参数。


当然,经典的龙格-库塔方法是四阶的。也就是在[xi,xi+1]上用四个点处的斜率加权平均作为平均斜率k的近似值,构成一系列四阶龙格-库塔公式。具有四阶精度,即局部截断误差是O(h5)
下面介绍最常用的一种四阶龙格-库塔方法。

yi+1=yi+c1K1+c2K2+c3K3+c4K4

这里K1,K2,K3,K4为四个不同点上的函数值,分别设其为

这里写图片描述

其中c1,c2,c3,c4,a2,a3,a4,b21,b31,b32,b41,b42,b43均为待定系数。
K2,K3,K4分别在xi点占城h的幂级数,带入线性组合式中,将得到的公式与y(xi+1)xi点上的泰勒展开式比较,使其两式右端知道h4的系数相等,经过较复杂的解方程过程便可得到关于ai,bij,cj的一组特解。
a2=a3=b21=b32=12
b31=b41=b42=0
a4=b43=1
c1=c4=16
c2=c3=13

带入之后得到
这里写图片描述

龙格-库塔方法的推导基于Taylor展开方法,因而它要求所求的解具有较好的光滑性。如果解的光滑性差,那么,使用四阶龙格-库塔方法求得的数值解,其精度可能反而不如改进的欧拉方法。在实际计算时,应正对问题的具体特点选择适合的算法。对于光滑性不太好的解,最好采用低阶算法而将步长h取小。


龙格-库塔法的C语言实现

#include "stdio.h"#include "stdlib.h"void RKT(t,y,n,h,k,z)int n;              /*微分方程组中方程的个数,也是未知函数的个数*/int k;              /*积分的步数(包括起始点这一步)*/double t;           /*积分的起始点t0*/double h;           /*积分的步长*/double y[];         /*存放n个未知函数在起始点t处的函数值,返回时,其初值在二维数组z的第零列中*/double z[];         /*二维数组,体积为n x k.返回k个积分点上的n个未知函数值*/{    extern void Func();             /*声明要求解的微分方程组*/    int i,j,l;    double a[4],*b,*d;    b=malloc(n*sizeof(double));     /*分配存储空间*/    if(b == NULL)    {        printf("内存分配失败\n");        exit(1);    }    d=malloc(n*sizeof(double));     /*分配存储空间*/    if(d == NULL)    {        printf("内存分配失败\n");        exit(1);    }    /*后面应用RK4公式中用到的系数*/    a[0]=h/2.0;                         a[1]=h/2.0;    a[2]=h;     a[3]=h;    for(i=0; i<=n-1; i++)         z[i*k]=y[i];                /*将初值赋给数组z的相应位置*/    for(l=1; l<=k-1; l++)    {        Func(y,d);        for (i=0; i<=n-1; i++)            b[i]=y[i];        for (j=0; j<=2; j++)        {            for (i=0; i<=n-1; i++)            {                y[i]=z[i*k+l-1]+a[j]*d[i];                b[i]=b[i]+a[j+1]*d[i]/3.0;            }            Func(y,d);        }        for(i=0; i<=n-1; i++)          y[i]=b[i]+h*d[i]/6.0;        for(i=0; i<=n-1; i++)          z[i*k+l]=y[i];        t=t+h;    }    free(b);            /*释放存储空间*/    free(d);            /*释放存储空间*/    return;}main(){    int i,j;    double t,h,y[3],z[3][11];    y[0]=-1.0;     y[1]=0.0;     y[2]=1.0;    t=0.0;     h=0.01;    RKT(t,y,3,h,11,z);    printf("\n");    for (i=0; i<=10; i++)           /*打印输出结果*/    {        t=i*h;        printf("t=%5.2f\t   ",t);        for (j=0; j<=2; j++)          printf("y(%d)=%e  ",j,z[j][i]);        printf("\n");    }}void Func(y,d)double y[],d[];{    d[0]=y[1];      /*y0'=y1*/    d[1]=-y[0];     /*y1'=y0*/    d[2]=-y[2];     /*y2'=y2*/    return;}

ps:如果有时间的话,可能会回过头来加一分解方程的推到吧…

1 0
原创粉丝点击