Matrix相关

来源:互联网 发布:百度地图坐标数据库 编辑:程序博客网 时间:2024/04/29 15:46

最近用到matrix,在网上找到了相关资料,留着后期查看..

此处来自于:http://www.jb51.net/article/37095.htm

首先大家看看下面这个3 x 3的矩阵,这个矩阵被分割成4部分。为什么分割成4部分,在后面详细说明。

首先给大家举个简单的例子:现设点P0(x0, y0)进行平移后,移到P(x,y),其中x方向的平移量为△x,y方向的平移量为△y,那么,点P(x,y)的坐标为:
x = x0  + △x 
y = y0  + △y
采用矩阵表达上述如下: 
clip_image002

上述也类似与图像的平移,通过上述矩阵我们发现,只需要修改矩阵右上角的2个元素就可以了。
我们回头看上述矩阵的划分: 
clip_image003

为了验证上面的功能划分,我们举个具体的例子:现设点P0(x0 ,y0)进行平移后,移到P(x,y),其中x放大a倍,y放大b倍,

矩阵就是:clip_image004,按照类似前面“平移”的方法就验证。

图像的旋转稍微复杂:现设点P0(x0, y0)旋转θ角后的对应点为P(x, y)。通过使用向量,我们得到如下:
x0 = r cosα 
y0 = r sinα
x = r cos(α+θ) = x0 cosθ - y0 sinθ 
y = r sin(α+θ) = x0 sinθ + y0 cosθ

于是我们得到矩阵:clip_image005

如果图像围绕着某个点(a ,b)旋转呢?则先要将坐标平移到该点,再进行旋转,然后将旋转后的图像平移回到原来的坐标原点,在后面的篇幅中我们将详细介绍。

Matrix学习——如何使用Matrix

本篇幅我们就结合Android 中的android.graphics.Matrix来具体说明,还记得我们前面说的图像旋转的矩阵:

clip_image005[1]

从最简单的旋转90度的是:

clip_image006

在android.graphics.Matrix中有对应旋转的函数: 
Matrix matrix = new Matrix(); 
matrix.setRotate(90); 
Test.Log(MAXTRIX_TAG,”setRotate(90):%s” , matrix.toString());

clip_image007

查看运行后的矩阵的值(通过Log输出):

clip_image008

与上面的公式基本完全一样(android.graphics.Matrix采用的是浮点数,而我们采用的整数)。
有了上面的例子,相信大家就可以亲自尝试了。通过上面的例子我们也发现,我们也可以直接来初始化矩阵,比如说要旋转30度:

clip_image010

前面给大家介绍了这么多,下面我们开始介绍图像的镜像,分为2种:水平镜像、垂直镜像。先介绍如何实现垂直镜像,什么是垂直镜像就不详细说明。图像的垂直镜像变化也可以用矩阵变化的表示,设点P0(x0 ,y0 )进行镜像后的对应点为P(x ,y ),图像的高度为fHeight,宽度为fWidth,原图像中的P0(x0 ,y0 )经过垂直镜像后的坐标变为(x0 ,fHeight- y0); 
x = x0 
y = fHeight – y0 
推导出相应的矩阵是:

clip_image011

final float f[] = {1.0F,0.0F,0.0F,0.0F,-1.0F,120.0F,0.0F,0.0F,1.0F}; 
Matrix matrix = new Matrix(); 
matrix.setValues(f);

按照上述方法运行后的结果: 
clip_image012

至于水平镜像采用类似的方法,大家可以自己去试试吧。
实际上,使用下面的方式也可以实现垂直镜像: 
Matrix matrix = new Matrix(); 
matrix.setScale (1.0,-1.0); 
matrix.postTraslate(0, fHeight);
这就是我们将在后面的篇幅中详细说明。

Matrix学习——图像的复合变化

Matrix学习——基础知识篇幅中,我们留下一个话题:如果图像围绕着某个点P(a,b)旋转,则先要将坐标系平移到该点,再进行旋转,然后将旋转后的图像平移回到原来的坐标原点。

我们需要3步:
1. 平移——将坐标系平移到点P(a,b);
2. 旋转——以原点为中心旋转图像;
3. 平移——将旋转后的图像平移回到原来的坐标原点;
相比较前面说的图像的几何变化(基本的图像几何变化),这里需要平移——旋转——平移,这种需要多种图像的几何变化就叫做图像的复合变化。
设对给定的图像依次进行了基本变化F1、F2、F3…..、Fn,它们的变化矩阵分别为T1、T2、T3…..、Tn,图像复合变化的矩阵T可以表示为:T = TnTn-1…T1。
按照上面的原则,围绕着某个点(a,b)旋转θ的变化矩阵序列是:

clip_image013

按照上面的公式,我们列举一个简单的例子:围绕(100,100)旋转30度(sin 30 = 0.5 ,cos 30 = 0.866) 
float f[]= { 0.866F,  -0.5F, 63.4F,0.5F, 0.866F,-36.6F,0.0F,    0.0F,  1.0F }; 
matrix = new Matrix(); 
matrix.setValues(f); 
旋转后的图像如下:

clip_image014

Android为我们提供了更加简单的方法,如下: 
Matrix matrix = new Matrix(); 
matrix.setRotate(30,100,100); 
矩阵运行后的实际结果: 

clip_image015

与我们前面通过公式获取得到的矩阵完全一样。
在这里我们提供另外一种方法,也可以达到同样的效果: 
float a = 100.0F,b = 100.0F; 
matrix = new Matrix(); 
matrix.setTranslate(a,b); 
matrix.preRotate(30); 
matrix.preTranslate(-a,-b); 
将在后面的篇幅中为大家详细解析
通过类似的方法,我们还可以得到:相对点P(a,b)的比例[sx,sy]变化矩阵

clip_image016

Matrix学习——Preconcats or Postconcats?

从最基本的高等数学开始,Matrix的基本操作包括:+、*。Matrix的乘法不满足交换律,也就是说A*B ≠B*A。还有2种常见的矩阵:

clip_image017

有了上面的基础,下面我们开始进入主题。由于矩阵不满足交换律,所以用矩阵B乘以矩阵A,需要考虑是左乘(B*A),还是右乘(A*B)。在Android的android.graphics.Matrix中为我们提供了类似的方法,也就是我们本篇幅要说明的Preconcats matrix 与 Postconcats  matrix。下面我们还是通过具体的例子还说明:

clip_image018

通过输出的信息,我们分析其运行过程如下:

clip_image019

看了上面的输出信息。我们得出结论:Preconcats matrix相当于右乘矩阵,Postconcats  matrix相当于左乘矩阵

clip_image020

Matrix学习——错切变换

什么是图像的错切变换(Shear transformation)?我们还是直接看图片错切变换后是的效果:

clip_image021

clip_image022

对图像的错切变换做个总结:

clip_image023

x = x0 + b*y0;
y = d*x0 + y0;

clip_image024

这里再次给大家介绍一个需要注意的地方:

clip_image025

通过以上,我们发现Matrix的setXXXX()函数,在调用时调用了一次reset(),这个在复合变换时需要注意。

Matrix学习——对称变换(反射)

什么是对称变换?具体的理论就不详细说明了,图像的镜像就是对称变换中的一种。

clip_image026

利用上面的总结做个具体的例子,产生与直线y= – x对称的反射图形,代码片段如下:

clip_image027

当前矩阵输出是:

clip_image028

图像变换的效果如下:

clip_image029

附:三角函数公式 
两角和公式
sin(a+b)=sinacosb+cosasinb
sin(a-b)=sinacosb-sinbcosa 
cos(a+b)=cosacosb-sinasinb
cos(a-b)=cosacosb+sinasinb
tan(a+b)=(tana+tanb)/(1-tanatanb)
tan(a-b)=(tana-tanb)/(1+tanatanb)
cot(a+b)=(cotacotb-1)/(cotb+cota) 
cot(a-b)=(cotacotb+1)/(cotb-cota)
倍角公式
tan2a=2tana/[1-(tana)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
sin2a=2sina*cosa
半角公式
sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)
cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)
tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))
cot(a/2)=√((1+cosa)/((1-cosa)) cot(a/2)=-√((1+cosa)/((1-cosa)) 
tan(a/2)=(1-cosa)/sina=sina/(1+cosa)
和差化积
2sinacosb=sin(a+b)+sin(a-b)
2cosasinb=sin(a+b)-sin(a-b) )
2cosacosb=cos(a+b)-sin(a-b)
-2sinasinb=cos(a+b)-cos(a-b)
sina+sinb=2sin((a+b)/2)cos((a-b)/2
cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
tana+tanb=sin(a+b)/cosacosb
积化和差公式
sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]
诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(pi/2-a)=cos(a)
cos(pi/2-a)=sin(a)
sin(pi/2+a)=cos(a)
cos(pi/2+a)=-sin(a)
sin(pi-a)=sin(a)
cos(pi-a)=-cos(a)
sin(pi+a)=-sin(a)
cos(pi+a)=-cos(a)
tga=tana=sina/cosa
万能公式
sin(a)= (2tan(a/2))/(1+tan^2(a/2))
cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))
tan(a)= (2tan(a/2))/(1-tan^2(a/2))
其它公式
a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]
a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]
1+sin(a)=(sin(a/2)+cos(a/2))^2
1-sin(a)=(sin(a/2)-cos(a/2))^2
其他非重点三角函数
csc(a)=1/sin(a)
sec(a)=1/cos(a)
双曲函数
sinh(a)=(e^a-e^(-a))/2
cosh(a)=(e^a+e^(-a))/2
tgh(a)=sinh(a)/cosh(a)



-----------------------------------------------------------分割-------------------------------------------------------

此处来自于:http://www.it165.net/pro/html/201404/12891.html

1.Android中使用Matrix对图像进行缩放、旋转、平移、斜切等变换的。

Matrix是一个3*3的矩阵,其值对应如下:

下面给出具体坐标对应变形的属性
|scaleX, skewX, translateX| 
|skewY, scaleY, translateY|
|0 ,0 , scale |

Matrix提供了一些方法来控制图片变换:
setTranslate(float dx,float dy):控制Matrix进行位移。
setSkew(float kx,float ky):控制Matrix进行倾斜,kx、ky为X、Y方向上的比例。
setSkew(float kx,float ky,float px,float py):控制Matrix以px、py为轴心进行倾斜,kx、ky为X、Y方向上的倾斜比例。
setRotate(float degrees):控制Matrix进行depress角度的旋转,轴心为(0,0)。
setRotate(float degrees,float px,float py):控制Matrix进行depress角度的旋转,轴心为(px,py)。
setScale(float sx,float sy):设置Matrix进行缩放,sx、sy为X、Y方向上的缩放比例。
setScale(float sx,float sy,float px,float py):设置Matrix以(px,py)为轴心进行缩放,sx、sy为X、Y方向上的缩放比例。
注意:以上的set方法,均有对应的post和pre方法,Matrix调用一系列set,pre,post方法时,可视为将这些方法插入到一个队列.当然,按照队列中从头至尾的顺序调用执行.其中pre表示在队头插入一个方法,post表示在队尾插入一个方法.而set表示把当前队列清空,并且总是位于队列的最中间位置.当执行了一次set后:pre方法总是插入到set前部的队列的最前面,post方法总是插入到set后部的队列的最后面

Demo

view sourceprint?
001.package com.example.testaa;
002. 
003.import org.androidannotations.annotations.AfterViews;
004.import org.androidannotations.annotations.Click;
005.import org.androidannotations.annotations.EActivity;
006.import org.androidannotations.annotations.UiThread;
007.import org.androidannotations.annotations.ViewById;
008. 
009.import android.app.Activity;
010.import android.graphics.Bitmap;
011.import android.graphics.BitmapFactory;
012.import android.graphics.Matrix;
013.import android.util.Log;
014.import android.widget.Button;
015.import android.widget.ImageView;
016.import android.widget.Toast;
017. 
018.@EActivity(R.layout.activity_main)
019.public class MainActivity extends Activity {
020. 
021.@ViewById
022.ImageView iv1;
023. 
024.@ViewById
025.ImageView iv2;
026. 
027.@ViewById
028.Button btn1;
029. 
030.@ViewById
031.Button btn2;
032. 
033.@ViewById
034.Button btn3;
035. 
036.@ViewById
037.Button btn4;
038. 
039.@ViewById
040.Button btn5;
041. 
042.Bitmap bitmap = null;
043. 
044./**
045.* 加载完View之后进行的处理
046.*/
047.@AfterViews
048.void afterViewProcess() {
049.bitmap = BitmapFactory.decodeResource(getResources(), R.drawable.lena);
050. 
051.}
052. 
053./**
054.* 缩小
055.*/
056.@Click
057.void btn1() {
058.Matrix matrix = new Matrix();
059.matrix.setScale(0.5f, 0.5f);
060.Bitmap bm = Bitmap.createBitmap(bitmap, 00, bitmap.getWidth(),
061.bitmap.getHeight(), matrix, true);
062.iv2.setImageBitmap(bm);
063.showToast(matrix);
064.}
065. 
066./**
067.* 先缩小后旋转
068.*/
069.@Click
070.void btn2() {
071.Matrix matrix = new Matrix();
072.matrix.setScale(0.5f, 0.5f);// 缩小为原来的一半
073.matrix.postRotate(45.0f);// 旋转45度 == matrix.setSinCos(0.5f, 0.5f);
074.Bitmap bm = Bitmap.createBitmap(bitmap, 00, bitmap.getWidth(),
075.bitmap.getHeight(), matrix, true);
076.iv2.setImageBitmap(bm);
077.showToast(matrix);
078.}
079. 
080./**
081.* 平移
082.*/
083.@Click
084.void btn3() {
085.Matrix matrix = new Matrix();
086.matrix.setTranslate(bitmap.getWidth() / 2, bitmap.getHeight() / 2);// 向左下平移
087.Bitmap bm = Bitmap.createBitmap(bitmap, 00, bitmap.getWidth(),
088.bitmap.getHeight(), matrix, true);
089.iv2.setImageBitmap(bm);
090.showToast(matrix);
091.}
092. 
093./**
094.* 斜切
095.*/
096.@Click
097.void btn4() {
098.Matrix matrix = new Matrix();
099.matrix.setSkew(0.5f, 0.5f);// 斜切
100.matrix.postScale(0.5f, 0.5f);// 缩小为原来的一半
101.Bitmap bm = Bitmap.createBitmap(bitmap, 00, bitmap.getWidth(),
102.bitmap.getHeight(), matrix, true);
103.iv2.setImageBitmap(bm);
104.showToast(matrix);
105.}
106. 
107./**
108.* 相当于自由变换
109.* 由一个矩形变成四边形
110.*/
111.@Click
112.void btn5() {
113.Matrix matrix = new Matrix();
114.float[] src = new float[] { 00// 左上
115.bitmap.getWidth(), 0,// 右上
116.bitmap.getWidth(), bitmap.getHeight(),// 右下
117.0, bitmap.getHeight() };// 左下
118.float[] dst = new float[] { 00,
119.bitmap.getWidth(), 30,
120.bitmap.getWidth(), bitmap.getHeight() - 30,
121.0,bitmap.getHeight() };
122.matrix.setPolyToPoly(src, 0, dst, 0, src.length/2);
123.Bitmap bm = Bitmap.createBitmap(bitmap, 00, bitmap.getWidth(),
124.bitmap.getHeight(), matrix, true);
125.iv2.setImageBitmap(bm);
126.showToast(matrix);
127.}
128. 
129./**
130.* 显示矩阵中的值
131.* @param matrix
132.*/
133.@UiThread
134.void showToast(Matrix matrix) {
135.String string = "";
136.float[] values = new float[9];
137.matrix.getValues(values);
138.for (int i = 0; i < values.length; i++) {
139.string += "matrix.at" + i + "=" + values[i];
140.}
141.Toast.makeText(this, string, Toast.LENGTH_SHORT).show();
142.Log.d("TEST", string);
143.}
144.}


以下是分别对图像进行如下操作的结果:




----------------------------------------------------------------------感谢各位大神的资料-----------------------------------------------------------------

0 0