stl_function.h

来源:互联网 发布:泰勒展开 矩阵形式 编辑:程序博客网 时间:2024/06/05 06:47

stl_function.h

/*stl_function.h *//* NOTE: This is an internal header file, included by other STL headers. *   You should not attempt to use it directly. */#ifndef __SGI_STL_INTERNAL_FUNCTION_H#define __SGI_STL_INTERNAL_FUNCTION_H__STL_BEGIN_NAMESPACE// 一元函数,模板参数:参数1的类型,返回值类型。// 抽象出来的基类,如果它被继承,主要是提供了2个typedef。template <class _Arg, class _Result>struct unary_function {    typedef _Arg argument_type;    typedef _Result result_type;};// 二元函数,模板参数:参数1的类型,参数2的类型,返回值类型。// 注意参数的位置,如果它被继承,主要是提供了3个typedef。template <class _Arg1, class _Arg2, class _Result>struct binary_function {    typedef _Arg1 first_argument_type;    typedef _Arg2 second_argument_type;    typedef _Result result_type;};// 加法template <class _Tp>struct plus : public binary_function<_Tp,_Tp,_Tp> {    _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; }};// 减法template <class _Tp>struct minus : public binary_function<_Tp,_Tp,_Tp> {    _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x - __y; }};// 乘法template <class _Tp>struct multiplies : public binary_function<_Tp,_Tp,_Tp> {    _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; }};// 除法template <class _Tp>struct divides : public binary_function<_Tp,_Tp,_Tp> {    _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x / __y; }};// identity_element (not part of the C++ standard).// 加0template <class _Tp> inline _Tp identity_element(plus<_Tp>) {    return _Tp(0);}// 乘1template <class _Tp> inline _Tp identity_element(multiplies<_Tp>) {    return _Tp(1);}// 取模template <class _Tp>struct modulus : public binary_function<_Tp,_Tp,_Tp> {    _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x % __y; }};// 取负数template <class _Tp>struct negate : public unary_function<_Tp,_Tp> {    _Tp operator()(const _Tp& __x) const { return -__x; }};// 相等template <class _Tp>struct equal_to : public binary_function<_Tp,_Tp,bool> {    bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; }};// 不相等template <class _Tp>struct not_equal_to : public binary_function<_Tp,_Tp,bool> {    bool operator()(const _Tp& __x, const _Tp& __y) const { return __x != __y; }};// 大于template <class _Tp>struct greater : public binary_function<_Tp,_Tp,bool> {    bool operator()(const _Tp& __x, const _Tp& __y) const { return __x > __y; }};// 小于template <class _Tp>struct less : public binary_function<_Tp,_Tp,bool> {    bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; }};// 大于等于template <class _Tp>struct greater_equal : public binary_function<_Tp,_Tp,bool>{    bool operator()(const _Tp& __x, const _Tp& __y) const { return __x >= __y; }};// 小于等于template <class _Tp>struct less_equal : public binary_function<_Tp,_Tp,bool> {    bool operator()(const _Tp& __x, const _Tp& __y) const { return __x <= __y; }};template <class _Tp>struct logical_and : public binary_function<_Tp,_Tp,bool>{    bool operator()(const _Tp& __x, const _Tp& __y) const { return __x && __y; }};template <class _Tp>struct logical_or : public binary_function<_Tp,_Tp,bool>{    bool operator()(const _Tp& __x, const _Tp& __y) const { return __x || __y; }};template <class _Tp>struct logical_not : public unary_function<_Tp,bool>{    bool operator()(const _Tp& __x) const { return !__x; }};// The template class describes a functor that, when called, returns the // logical NOT of its stored one-argument functor. You use it specify a // function object in terms of its stored functor.// 一元反template <class _Predicate>class unary_negate    : public unary_function<typename _Predicate::argument_type, bool> {protected:    _Predicate _M_pred;public:    explicit unary_negate(const _Predicate& __x) : _M_pred(__x) {}    bool operator()(const typename _Predicate::argument_type& __x) const {        return !_M_pred(__x);    }};// 将一元函数取反,这里1表示1元template <class _Predicate>inline unary_negate<_Predicate>     not1(const _Predicate& __pred){    return unary_negate<_Predicate>(__pred);}// 二元反template <class _Predicate> class binary_negate     : public binary_function<typename _Predicate::first_argument_type,    typename _Predicate::second_argument_type,    bool> {protected:    _Predicate _M_pred;public:    explicit binary_negate(const _Predicate& __x) : _M_pred(__x) {}    bool operator()(const typename _Predicate::first_argument_type& __x,         const typename _Predicate::second_argument_type& __y) const    {        return !_M_pred(__x, __y);     }};// 二元反template <class _Predicate>inline binary_negate<_Predicate>     not2(const _Predicate& __pred){    return binary_negate<_Predicate>(__pred);}// The template class describes a one-argument functor that, when called, // returns its stored two-argument functor called with its stored first // argument and the supplied second argument. You use it specify a function// object in terms of its stored functor.// 函数绑定它的第一个参数,还需要第二个参数template <class _Operation> class binder1st    : public unary_function<typename _Operation::second_argument_type,    typename _Operation::result_type> {protected:    _Operation op;    typename _Operation::first_argument_type value;public:    binder1st(const _Operation& __x,        const typename _Operation::first_argument_type& __y)        : op(__x), value(__y) {}    typename _Operation::result_type        operator()(const typename _Operation::second_argument_type& __x) const {            return op(value, __x);     }};// 绑定函数fn的第一个参数为xtemplate <class _Operation, class _Tp>inline binder1st<_Operation>     bind1st(const _Operation& __fn, const _Tp& __x) {    typedef typename _Operation::first_argument_type _Arg1_type;    return binder1st<_Operation>(__fn, _Arg1_type(__x));}// 函数绑定了它的第二个参数,所以还需要第一个参数template <class _Operation> class binder2nd    : public unary_function<typename _Operation::first_argument_type,    typename _Operation::result_type> {protected:    _Operation op;    typename _Operation::second_argument_type value;public:    binder2nd(const _Operation& __x,        const typename _Operation::second_argument_type& __y)         : op(__x), value(__y) {}    // 在这里补充函数的第二个参数    typename _Operation::result_type        operator()(const typename _Operation::first_argument_type& __x) const {            return op(__x, value);     }};// 绑定函数fn的第二个参数为xtemplate <class _Operation, class _Tp>inline binder2nd<_Operation>     bind2nd(const _Operation& __fn, const _Tp& __x) {    typedef typename _Operation::second_argument_type _Arg2_type;    return binder2nd<_Operation>(__fn, _Arg2_type(__x));}// unary_compose and binary_compose (extensions, not part of the standard).// 联合两个函数操作针对一元函数fx fx(fy(x))template <class _Operation1, class _Operation2>class unary_compose    : public unary_function<typename _Operation2::argument_type,    typename _Operation1::result_type> {protected:    _Operation1 _M_fn1;    _Operation2 _M_fn2;public:    unary_compose(const _Operation1& __x, const _Operation2& __y)         : _M_fn1(__x), _M_fn2(__y) {}    typename _Operation1::result_type        operator()(const typename _Operation2::argument_type& __x) const {            return _M_fn1(_M_fn2(__x));    }};// 联合两个函数操作,fn1(fn2(x))template <class _Operation1, class _Operation2>inline unary_compose<_Operation1,_Operation2> compose1(const _Operation1& __fn1, const _Operation2& __fn2){    return unary_compose<_Operation1,_Operation2>(__fn1, __fn2);}// 联合3个函数,fn1(fn2, fn3)template <class _Operation1, class _Operation2, class _Operation3>class binary_compose    : public unary_function<typename _Operation2::argument_type,    typename _Operation1::result_type> {protected:    _Operation1 _M_fn1;    _Operation2 _M_fn2;    _Operation3 _M_fn3;public:    binary_compose(const _Operation1& __x, const _Operation2& __y,         const _Operation3& __z)         : _M_fn1(__x), _M_fn2(__y), _M_fn3(__z) { }    typename _Operation1::result_type        operator()(const typename _Operation2::argument_type& __x) const {            return _M_fn1(_M_fn2(__x), _M_fn3(__x));    }};// 联合3个函数 template <class _Operation1, class _Operation2, class _Operation3>inline binary_compose<_Operation1, _Operation2, _Operation3>     compose2(const _Operation1& __fn1, const _Operation2& __fn2,     const _Operation3& __fn3){    return binary_compose<_Operation1,_Operation2,_Operation3>        (__fn1, __fn2, __fn3);}// 一元函数指针对象template <class _Arg, class _Result>class pointer_to_unary_function : public unary_function<_Arg, _Result> {protected:    _Result (*_M_ptr)(_Arg);public:    pointer_to_unary_function() {}    explicit pointer_to_unary_function(_Result (*__x)(_Arg)) : _M_ptr(__x) {}    _Result operator()(_Arg __x) const { return _M_ptr(__x); }};// 封装一元函数成一元函数指针对象template <class _Arg, class _Result>inline pointer_to_unary_function<_Arg, _Result> ptr_fun(_Result (*__x)(_Arg)){    return pointer_to_unary_function<_Arg, _Result>(__x);}template <class _Arg1, class _Arg2, class _Result>class pointer_to_binary_function :     public binary_function<_Arg1,_Arg2,_Result> {protected:    _Result (*_M_ptr)(_Arg1, _Arg2);public:    pointer_to_binary_function() {}    explicit pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2))         : _M_ptr(__x) {}    _Result operator()(_Arg1 __x, _Arg2 __y) const {        return _M_ptr(__x, __y);    }};template <class _Arg1, class _Arg2, class _Result>inline pointer_to_binary_function<_Arg1,_Arg2,_Result>     ptr_fun(_Result (*__x)(_Arg1, _Arg2)) {        return pointer_to_binary_function<_Arg1,_Arg2,_Result>(__x);}// identity is an extensions: it is not part of the standard.template <class _Tp>struct _Identity : public unary_function<_Tp,_Tp> {    const _Tp& operator()(const _Tp& __x) const { return __x; }};template <class _Tp> struct identity : public _Identity<_Tp> {};// select1st and select2nd are extensions: they are not part of the standard.// 返回pair.firsttemplate <class _Pair>struct _Select1st : public unary_function<_Pair, typename _Pair::first_type> {    const typename _Pair::first_type& operator()(const _Pair& __x) const {        return __x.first;    }};template <class _Pair>struct _Select2nd : public unary_function<_Pair, typename _Pair::second_type>{    const typename _Pair::second_type& operator()(const _Pair& __x) const {        return __x.second;    }};template <class _Pair> struct select1st : public _Select1st<_Pair> {};template <class _Pair> struct select2nd : public _Select2nd<_Pair> {};// project1st and project2nd are extensions: they are not part of the standardtemplate <class _Arg1, class _Arg2>struct _Project1st : public binary_function<_Arg1, _Arg2, _Arg1> {    _Arg1 operator()(const _Arg1& __x, const _Arg2&) const { return __x; }};template <class _Arg1, class _Arg2>struct _Project2nd : public binary_function<_Arg1, _Arg2, _Arg2> {    _Arg2 operator()(const _Arg1&, const _Arg2& __y) const { return __y; }};template <class _Arg1, class _Arg2> struct project1st : public _Project1st<_Arg1, _Arg2> {};template <class _Arg1, class _Arg2>struct project2nd : public _Project2nd<_Arg1, _Arg2> {};// constant_void_fun, constant_unary_fun, and constant_binary_fun are// extensions: they are not part of the standard.  (The same, of course,// is true of the helper functions constant0, constant1, and constant2.)// 这是干什么?用来处理const xxx 吗?template <class _Result>struct _Constant_void_fun {    typedef _Result result_type;    result_type _M_val;    _Constant_void_fun(const result_type& __v) : _M_val(__v) {}    const result_type& operator()() const { return _M_val; }};template <class _Result, class _Argument>struct _Constant_unary_fun {    typedef _Argument argument_type;    typedef  _Result  result_type;    result_type _M_val;    _Constant_unary_fun(const result_type& __v) : _M_val(__v) {}    const result_type& operator()(const _Argument&) const { return _M_val; }};template <class _Result, class _Arg1, class _Arg2>struct _Constant_binary_fun {    typedef  _Arg1   first_argument_type;    typedef  _Arg2   second_argument_type;    typedef  _Result result_type;    _Result _M_val;    _Constant_binary_fun(const _Result& __v) : _M_val(__v) {}    const result_type& operator()(const _Arg1&, const _Arg2&) const {        return _M_val;    }};template <class _Result>struct constant_void_fun : public _Constant_void_fun<_Result> {    constant_void_fun(const _Result& __v) : _Constant_void_fun<_Result>(__v) {}};template <class _Result,class _Argument __STL_DEPENDENT_DEFAULT_TMPL(_Result)>struct constant_unary_fun : public _Constant_unary_fun<_Result, _Argument>{    constant_unary_fun(const _Result& __v)        : _Constant_unary_fun<_Result, _Argument>(__v) {}};template <class _Result,class _Arg1 __STL_DEPENDENT_DEFAULT_TMPL(_Result),class _Arg2 __STL_DEPENDENT_DEFAULT_TMPL(_Arg1)>struct constant_binary_fun    : public _Constant_binary_fun<_Result, _Arg1, _Arg2>{    constant_binary_fun(const _Result& __v)        : _Constant_binary_fun<_Result, _Arg1, _Arg2>(__v) {}};template <class _Result>inline constant_void_fun<_Result> constant0(const _Result& __val){    return constant_void_fun<_Result>(__val);}template <class _Result>inline constant_unary_fun<_Result,_Result> constant1(const _Result& __val){    return constant_unary_fun<_Result,_Result>(__val);}template <class _Result>inline constant_binary_fun<_Result,_Result,_Result>     constant2(const _Result& __val){    return constant_binary_fun<_Result,_Result,_Result>(__val);}// subtractive_rng is an extension: it is not part of the standard.// Note: this code assumes that int is 32 bits.class subtractive_rng : public unary_function<unsigned int, unsigned int> {private:    unsigned int _M_table[55];    size_t _M_index1;    size_t _M_index2;public:    unsigned int operator()(unsigned int __limit) {        _M_index1 = (_M_index1 + 1) % 55;        _M_index2 = (_M_index2 + 1) % 55;        _M_table[_M_index1] = _M_table[_M_index1] - _M_table[_M_index2];        return _M_table[_M_index1] % __limit;    }    void _M_initialize(unsigned int __seed)    {        unsigned int __k = 1;        _M_table[54] = __seed;        size_t __i;        for (__i = 0; __i < 54; __i++) {            size_t __ii = (21 * (__i + 1) % 55) - 1;            _M_table[__ii] = __k;            __k = __seed - __k;            __seed = _M_table[__ii];        }        for (int __loop = 0; __loop < 4; __loop++) {            for (__i = 0; __i < 55; __i++)                _M_table[__i] = _M_table[__i] - _M_table[(1 + __i + 30) % 55];        }        _M_index1 = 0;        _M_index2 = 31;    }    subtractive_rng(unsigned int __seed) { _M_initialize(__seed); }    subtractive_rng() { _M_initialize(161803398u); }};// 看看下面这段话// Adaptor function objects: pointers to member functions.// There are a total of 16 = 2^4 function objects in this family.//  (1) Member functions taking no arguments vs member functions taking//       one argument.//  (2) Call through pointer vs call through reference.//  (3) Member function with void return type vs member function with//      non-void return type.//  (4) Const vs non-const member function.// Note that choice (3) is nothing more than a workaround: according//  to the draft, compilers should handle void and non-void the same way.//  This feature is not yet widely implemented, though.  You can only use//  member functions returning void if your compiler supports partial//  specialization.// All of this complexity is in the function objects themselves.  You can//  ignore it by using the helper function mem_fun and mem_fun_ref,//  which create whichever type of adaptor is appropriate.//  (mem_fun1 and mem_fun1_ref are no longer part of the C++ standard,//  but they are provided for backward compatibility.)template <class _Ret, class _Tp>class mem_fun_t : public unary_function<_Tp*,_Ret> {public:    explicit mem_fun_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {}    _Ret operator()(_Tp* __p) const { return (__p->*_M_f)(); }private:    _Ret (_Tp::*_M_f)();};template <class _Ret, class _Tp>class const_mem_fun_t : public unary_function<const _Tp*,_Ret> {public:    explicit const_mem_fun_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {}    _Ret operator()(const _Tp* __p) const { return (__p->*_M_f)(); }private:    _Ret (_Tp::*_M_f)() const;};template <class _Ret, class _Tp>class mem_fun_ref_t : public unary_function<_Tp,_Ret> {public:    explicit mem_fun_ref_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) {}    _Ret operator()(_Tp& __r) const { return (__r.*_M_f)(); }private:    _Ret (_Tp::*_M_f)();};template <class _Ret, class _Tp>class const_mem_fun_ref_t : public unary_function<_Tp,_Ret> {public:    explicit const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) {}    _Ret operator()(const _Tp& __r) const { return (__r.*_M_f)(); }private:    _Ret (_Tp::*_M_f)() const;};template <class _Ret, class _Tp, class _Arg>class mem_fun1_t : public binary_function<_Tp*,_Arg,_Ret> {public:    explicit mem_fun1_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}    _Ret operator()(_Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); }private:    _Ret (_Tp::*_M_f)(_Arg);};template <class _Ret, class _Tp, class _Arg>class const_mem_fun1_t : public binary_function<const _Tp*,_Arg,_Ret> {public:    explicit const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}    _Ret operator()(const _Tp* __p, _Arg __x) const    { return (__p->*_M_f)(__x); }private:    _Ret (_Tp::*_M_f)(_Arg) const;};template <class _Ret, class _Tp, class _Arg>class mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> {public:    explicit mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}    _Ret operator()(_Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); }private:    _Ret (_Tp::*_M_f)(_Arg);};template <class _Ret, class _Tp, class _Arg>class const_mem_fun1_ref_t : public binary_function<_Tp,_Arg,_Ret> {public:    explicit const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}    _Ret operator()(const _Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); }private:    _Ret (_Tp::*_M_f)(_Arg) const;};#ifdef __STL_CLASS_PARTIAL_SPECIALIZATIONtemplate <class _Tp>class mem_fun_t<void, _Tp> : public unary_function<_Tp*,void> {public:    explicit mem_fun_t(void (_Tp::*__pf)()) : _M_f(__pf) {}    void operator()(_Tp* __p) const { (__p->*_M_f)(); }private:    void (_Tp::*_M_f)();};template <class _Tp>class const_mem_fun_t<void, _Tp> : public unary_function<const _Tp*,void> {public:    explicit const_mem_fun_t(void (_Tp::*__pf)() const) : _M_f(__pf) {}    void operator()(const _Tp* __p) const { (__p->*_M_f)(); }private:    void (_Tp::*_M_f)() const;};template <class _Tp>class mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> {public:    explicit mem_fun_ref_t(void (_Tp::*__pf)()) : _M_f(__pf) {}    void operator()(_Tp& __r) const { (__r.*_M_f)(); }private:    void (_Tp::*_M_f)();};template <class _Tp>class const_mem_fun_ref_t<void, _Tp> : public unary_function<_Tp,void> {public:    explicit const_mem_fun_ref_t(void (_Tp::*__pf)() const) : _M_f(__pf) {}    void operator()(const _Tp& __r) const { (__r.*_M_f)(); }private:    void (_Tp::*_M_f)() const;};template <class _Tp, class _Arg>class mem_fun1_t<void, _Tp, _Arg> : public binary_function<_Tp*,_Arg,void> {public:    explicit mem_fun1_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}    void operator()(_Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); }private:    void (_Tp::*_M_f)(_Arg);};template <class _Tp, class _Arg>class const_mem_fun1_t<void, _Tp, _Arg>     : public binary_function<const _Tp*,_Arg,void> {public:    explicit const_mem_fun1_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}    void operator()(const _Tp* __p, _Arg __x) const { (__p->*_M_f)(__x); }private:    void (_Tp::*_M_f)(_Arg) const;};template <class _Tp, class _Arg>class mem_fun1_ref_t<void, _Tp, _Arg>    : public binary_function<_Tp,_Arg,void> {public:    explicit mem_fun1_ref_t(void (_Tp::*__pf)(_Arg)) : _M_f(__pf) {}    void operator()(_Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); }private:    void (_Tp::*_M_f)(_Arg);};template <class _Tp, class _Arg>class const_mem_fun1_ref_t<void, _Tp, _Arg>    : public binary_function<_Tp,_Arg,void> {public:    explicit const_mem_fun1_ref_t(void (_Tp::*__pf)(_Arg) const) : _M_f(__pf) {}    void operator()(const _Tp& __r, _Arg __x) const { (__r.*_M_f)(__x); }private:    void (_Tp::*_M_f)(_Arg) const;};#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */// Mem_fun adaptor helper functions.  There are only two://  mem_fun and mem_fun_ref.  (mem_fun1 and mem_fun1_ref //  are provided for backward compatibility, but they are no longer//  part of the C++ standard.)template <class _Ret, class _Tp>inline mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)()){ return mem_fun_t<_Ret,_Tp>(__f); }template <class _Ret, class _Tp>inline const_mem_fun_t<_Ret,_Tp> mem_fun(_Ret (_Tp::*__f)() const){ return const_mem_fun_t<_Ret,_Tp>(__f); }template <class _Ret, class _Tp>inline mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)()) { return mem_fun_ref_t<_Ret,_Tp>(__f); }template <class _Ret, class _Tp>inline const_mem_fun_ref_t<_Ret,_Tp> mem_fun_ref(_Ret (_Tp::*__f)() const){ return const_mem_fun_ref_t<_Ret,_Tp>(__f); }template <class _Ret, class _Tp, class _Arg>inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg)){ return mem_fun1_t<_Ret,_Tp,_Arg>(__f); }template <class _Ret, class _Tp, class _Arg>inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun(_Ret (_Tp::*__f)(_Arg) const){ return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); }template <class _Ret, class _Tp, class _Arg>inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg)){ return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }template <class _Ret, class _Tp, class _Arg>inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg>    mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const){ return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }template <class _Ret, class _Tp, class _Arg>inline mem_fun1_t<_Ret,_Tp,_Arg> mem_fun1(_Ret (_Tp::*__f)(_Arg)){ return mem_fun1_t<_Ret,_Tp,_Arg>(__f); }template <class _Ret, class _Tp, class _Arg>inline const_mem_fun1_t<_Ret,_Tp,_Arg> mem_fun1(_Ret (_Tp::*__f)(_Arg) const){ return const_mem_fun1_t<_Ret,_Tp,_Arg>(__f); }template <class _Ret, class _Tp, class _Arg>inline mem_fun1_ref_t<_Ret,_Tp,_Arg> mem_fun1_ref(_Ret (_Tp::*__f)(_Arg)){ return mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }template <class _Ret, class _Tp, class _Arg>inline const_mem_fun1_ref_t<_Ret,_Tp,_Arg>    mem_fun1_ref(_Ret (_Tp::*__f)(_Arg) const){ return const_mem_fun1_ref_t<_Ret,_Tp,_Arg>(__f); }__STL_END_NAMESPACE#endif /* __SGI_STL_INTERNAL_FUNCTION_H */// Local Variables:// mode:C++// End:
0 0
原创粉丝点击