Android消息机制分析

来源:互联网 发布:htc g16软件下载 编辑:程序博客网 时间:2024/06/05 08:09

 转载请注明出处:http://blog.csdn.net/fishle123/article/details/47864923

对Android开发有一定了解的人都知道,Android应用程序是消息驱动的。Android应用程序的消息机制是围绕消息队列来实现的,具体的,主要通过HandlerMessageQueueLooper三个类来实现。其中Handler用来发送和处理消息;MessageQueue表示一个消息队列,负责入队和出队消息;Looper类用于创建消息循环。本文结合源码来介绍Android的消息机制包括:消息循环的创建、消息的发送和处理。

    每个Android应用程序都一个主线程ActivityThread,每个主线程都有一个消息循环。先看一下ActivityThreadmain方法:

    public static void main(String[] args) {        SamplingProfilerIntegration.start();        // CloseGuard defaults to true and can be quite spammy.  We        // disable it here, but selectively enable it later (via        // StrictMode) on debug builds, but using DropBox, not logs.        CloseGuard.setEnabled(false);        Environment.initForCurrentUser();        // Set the reporter for event logging in libcore        EventLogger.setReporter(new EventLoggingReporter());        Security.addProvider(new AndroidKeyStoreProvider());        // Make sure TrustedCertificateStore looks in the right place for CA certificates        final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());        TrustedCertificateStore.setDefaultUserDirectory(configDir);        Process.setArgV0("<pre-initialized>");        Looper.prepareMainLooper();        ActivityThread thread = new ActivityThread();        thread.attach(false);        if (sMainThreadHandler == null) {            sMainThreadHandler = thread.getHandler();        }        if (false) {            Looper.myLooper().setMessageLogging(new                    LogPrinter(Log.DEBUG, "ActivityThread"));        }        Looper.loop();        throw new RuntimeException("Main thread loop unexpectedly exited");    }

    可以看到第22行调用Looper.prepareMainLooper(),再看一下prepareMainLooper具体做了哪些工作:

 public static void prepareMainLooper() {        prepare();        setMainLooper(myLooper());        myLooper().mQueue.mQuitAllowed = false;    }

    可以看到在第调用prepare,然后调用setMainLooper设置主线程的Looper。不难推测,prepare中会创建Looper,先贴上代码:

public static void prepare() {        if (sThreadLocal.get() != null) {            throw new RuntimeException("Only one Looper may be created per thread");        }        sThreadLocal.set(new Looper());    }

    prepare()里面先检查是否已经创建了Looper,如果没有,则创建一个并保存到sThreadLocal中,反之,如果已经创建了一个,则会抛出异常。通过这里,我们也可以发现,prepare只能调用一次,每个线程只有一个Looper。那这里已经创建了Looper,那么第36行的Looper.loop()又是做什么的呢?继续看源码:

  public static void loop() {        Looper me = myLooper();        if (me == null) {            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");        }        MessageQueue queue = me.mQueue;        // Make sure the identity of this thread is that of the local process,        // and keep track of what that identity token actually is.        Binder.clearCallingIdentity();        final long ident = Binder.clearCallingIdentity();        while (true) {            Message msg = queue.next(); // might block            if (msg != null) {                if (msg.target == null) {                    // No target is a magic identifier for the quit message.                    return;                }                long wallStart = 0;                long threadStart = 0;                // This must be in a local variable, in case a UI event sets the logger                Printer logging = me.mLogging;                if (logging != null) {                    logging.println(">>>>> Dispatching to " + msg.target + " " +                            msg.callback + ": " + msg.what);                    wallStart = SystemClock.currentTimeMicro();                    threadStart = SystemClock.currentThreadTimeMicro();                }                msg.target.dispatchMessage(msg);                if (logging != null) {                    long wallTime = SystemClock.currentTimeMicro() - wallStart;                    long threadTime = SystemClock.currentThreadTimeMicro() - threadStart;                    logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);                    if (logging instanceof Profiler) {                        ((Profiler) logging).profile(msg, wallStart, wallTime,                                threadStart, threadTime);                    }                }                // Make sure that during the course of dispatching the                // identity of the thread wasn't corrupted.                final long newIdent = Binder.clearCallingIdentity();                if (ident != newIdent) {                    Log.wtf(TAG, "Thread identity changed from 0x"                            + Long.toHexString(ident) + " to 0x"                            + Long.toHexString(newIdent) + " while dispatching to "                            + msg.target.getClass().getName() + " "                            + msg.callback + " what=" + msg.what);                }                msg.recycle();            }        }    }

    可以看到,在loop中会进入一个死循环,每次循环的开始调用MessageQueu.next()方法从消息队列中取出一个Message,然后调用 msg.target.dispatchMessage(msg)交给message的接受者处理。这里的msg.target就是message的接受者,其实就是一个Handler。如果消息队列为空,那么MessageQueue .next()会阻塞,直到有新的消息达到。到这里,就可以明白调用Looper.loop后,线程就进入了消息循环等待message到来并交给message对应的Handler来处理消息。正常情况下,一旦进入消息循环就不会退出,除非MessageMessage.target=null,见第16行代码。

   到此为止,我们就知道如果要给线程创建一个消息循环,可以按如下方式来定义:

 class LooperThread extends Thread {        public void run() {            Looper.prepare();            ......            Looper.loop();        }    }

    上面提到在Looper中会通过msg.target.dispatchMessage(msg)将msg分派到对应的Handler来出来,这里看一下dispatchMessage的实现:

public void dispatchMessage(Message msg) {        if (msg.callback != null) {            handleCallback(msg);        } else {            if (mCallback != null) {                if (mCallback.handleMessage(msg)) {                    return;                }            }            handleMessage(msg);        }    }

    在dispatchMessage中先检查在Message中是否定义了消息的callback,如果有,优先调用Messagecallback来处理消息;反之,如果HandlermCallBack不为null,则调用mCallBackhandleMessage来处理,当MCallBack也为null的时候,才调用HanddlerhandleMessage来处理。这里可以看出,Message有三种方式来实现它的处理逻辑:

1)在Message.callback中实现,这里的callback是一个Runnable对象;

2)在Handler的内部接口CallBack中实现;

3)重写Handler的handleMessage来实现。

    阅读Handler的源码,可以发现当调用handler.post(Runnable)的时候,就是通过第1种方式来实现:

public final boolean post(Runnable r) {        return  sendMessageDelayed(getPostMessage(r), 0);    }    private final Message getPostMessage(Runnable r) {        Message m = Message.obtain();        m.callback = r;        return m;    }

    通常我们会通过第3种方式来定义自己的Handler,如在主线程:

Handler mHandler=new Handler(){        @Override        public void handleMessage(Message msg) {            // TODO Auto-generated method stub            super.handleMessage(msg);            ......//你的处理逻辑        }    };

    这里看一下Handler的构造函数(还有其他几种构造函数):

public Handler() {        if (FIND_POTENTIAL_LEAKS) {            final Class<? extends Handler> klass = getClass();            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&                    (klass.getModifiers() & Modifier.STATIC) == 0) {                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +                        klass.getCanonicalName());            }        }        mLooper = Looper.myLooper();        if (mLooper == null) {            throw new RuntimeException(                    "Can't create handler inside thread that has not called Looper.prepare()");        }        mQueue = mLooper.mQueue;        mCallback = null;    }

这里可以看到,创建Handler的时候,会在保存当前线程的Looper及Looper对应的MessageQueue。这样发送消息时Handler就能将Message发送到当前线程的消息循环中。当然,我们也可以指定Looper,这样就可以给另一个线程发送消息,如在另一个线程中给主线程发送消息。这里也可以看出,定义Handler之前一定要先调用Looper.prepare()来创建一个Looper,主线程中会在ActivityThread的main方法中创建,不需要我们手动调用。但是在子线程中,一定要先调用Looper.prepare()才能创建 Handler,否则会抛出一个异常,如第78行所示。

Handler常见的用法之一就是在子线程中更新UI,我们可以通过handler.post(Runnable)让runnable在主线程中执行。其中Activity的runOnUIThread就是利用handler来实现的,view.post(Runnable)也是相似的实现。

public final void runOnUiThread(Runnable action) {        if (Thread.currentThread() != mUiThread) {            mHandler.post(action);        } else {            action.run();        }    }

当调用handler.sendMessage()发送消息时,最终会调用Handler.sendMessageAtTime,源码如下:

 public boolean sendMessageAtTime(Message msg, long uptimeMillis)    {        boolean sent = false;        MessageQueue queue = mQueue;        if (queue != null) {            msg.target = this;            sent = queue.enqueueMessage(msg, uptimeMillis);        }        else {            RuntimeException e = new RuntimeException(                    this + " sendMessageAtTime() called with no mQueue");            Log.w("Looper", e.getMessage(), e);        }        return sent;    }

    在这里可以看出,发送消息的时候,将Message添加到队列中,并且会将Message的接受者设置为发送Message的handler,如代码第6行所示。前面有提到,在loop中会调用MessageQueue.next()来取消息。这里先看一下消息的入队操作:

final boolean enqueueMessage(Message msg, long when) {        if (msg.isInUse()) {            throw new AndroidRuntimeException(msg                    + " This message is already in use.");        }        if (msg.target == null && !mQuitAllowed) {            throw new RuntimeException("Main thread not allowed to quit");        }        final boolean needWake;        synchronized (this) {            if (mQuiting) {                RuntimeException e = new RuntimeException(                        msg.target + " sending message to a Handler on a dead thread");                Log.w("MessageQueue", e.getMessage(), e);                return false;            } else if (msg.target == null) {                mQuiting = true;            }            msg.when = when;            //Log.d("MessageQueue", "Enqueing: " + msg);            Message p = mMessages;            if (p == null || when == 0 || when < p.when) {                msg.next = p;                mMessages = msg;                needWake = mBlocked; // new head, might need to wake up            } else {                Message prev = null;                while (p != null && p.when <= when) {                    prev = p;                    p = p.next;                }                msg.next = prev.next;                prev.next = msg;                needWake = false; // still waiting on head, no need to wake up            }        }        if (needWake) {            nativeWake(mPtr);        }        return true;    }

    看代码的第2935行代码,这里会根据消息的处理时间Message.when来确定消息插入到队列中的具体位置,从而保证队首的消息是下一个要处理的。在这里也可以发现,主线程的消息循环是不能退出的,如第6行所示。

前面有提到MessageQueue.next()可能会阻塞。

    这里一起看一下消息的出队操作:

final Message next() {        int pendingIdleHandlerCount = -1; // -1 only during first iteration        int nextPollTimeoutMillis = 0;        for (;;) {            if (nextPollTimeoutMillis != 0) {                Binder.flushPendingCommands();            }            nativePollOnce(mPtr, nextPollTimeoutMillis);            synchronized (this) {                // Try to retrieve the next message.  Return if found.                final long now = SystemClock.uptimeMillis();                final Message msg = mMessages;                if (msg != null) {                    final long when = msg.when;                    if (now >= when) {                        mBlocked = false;                        mMessages = msg.next;                        msg.next = null;                        if (false) Log.v("MessageQueue", "Returning message: " + msg);                        msg.markInUse();                        return msg;                    } else {                        nextPollTimeoutMillis = (int) Math.min(when - now, Integer.MAX_VALUE);                    }                } else {                    nextPollTimeoutMillis = -1;                }                // If first time, then get the number of idlers to run.                if (pendingIdleHandlerCount < 0) {                    pendingIdleHandlerCount = mIdleHandlers.size();                }                if (pendingIdleHandlerCount == 0) {                    // No idle handlers to run.  Loop and wait some more.                    mBlocked = true;                    continue;                }                if (mPendingIdleHandlers == null) {                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];                }                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);            }            // Run the idle handlers.            // We only ever reach this code block during the first iteration.            for (int i = 0; i < pendingIdleHandlerCount; i++) {                final IdleHandler idler = mPendingIdleHandlers[i];                mPendingIdleHandlers[i] = null; // release the reference to the handler                boolean keep = false;                try {                    keep = idler.queueIdle();                } catch (Throwable t) {                    Log.wtf("MessageQueue", "IdleHandler threw exception", t);                }                if (!keep) {                    synchronized (this) {                        mIdleHandlers.remove(idler);                    }                }            }            // Reset the idle handler count to 0 so we do not run them again.            pendingIdleHandlerCount = 0;            // While calling an idle handler, a new message could have been delivered            // so go back and look again for a pending message without waiting.            nextPollTimeoutMillis = 0;        }    }

    在第3行,定义变量nextPollTimeoutMills,用来描述当消息队列中没有新的消息时,当前线程需要睡眠多长时间。当nextPollTimeoutMills等于-1时,表示无限制等待,直到有新的消息到达。在没有消息到达的时候会调用nativePollOnce来检查是否有新消息需要处理,nativePollOnce是一个native函数,主要是通过Linux中的poll函数来实现的。

    当队列不为空时,在第17行先判断当前时间是否大于等于message的处理时间,如果是,则返回该message,反之,计算需要等待的时间,并更新nextPollTimeoutMills

    如果队列为空,则nextPollTimeoutMills的值设置为-1。在进入睡眠之前,先调用注册到消息队列中的空闲消息处理器IdleHandler对象的queueIdle函数,以便有机会在线程空闲时执行一些操作。可以通过MessageQueueaddIdleHandlerremoveIdleHandler来注册和注销一个空闲消息处理器。

   到此为止,已经分析完消息循环的创建,发送消息,以及消息的处理。

 

0 0