ZOJ 3868 GCD Expectation (容斥+莫比乌斯反演)

来源:互联网 发布:平均场理论 复杂网络 编辑:程序博客网 时间:2024/05/16 05:52

GCD Expectation

Time Limit: 4 Seconds     Memory Limit:262144 KB

Edward has a set of n integers {a1,a2,...,an}. He randomly picks a nonempty subset {x1,x2,…,xm} (each nonempty subset has equal probability to be picked), and would like to know the expectation of [gcd(x1,x2,…,xm)]k.

Note that gcd(x1,x2,…,xm) is the greatest common divisor of {x1,x2,…,xm}.

Input

There are multiple test cases. The first line of input contains an integerT indicating the number of test cases. For each test case:

The first line contains two integers n,k (1 ≤n, k ≤ 106). The second line containsn integersa1, a2,…,an (1 ≤ai ≤ 106).

The sum of values max{ai} for all the test cases does not exceed 2000000.

Output

For each case, if the expectation is E, output a single integer denotesE · (2n - 1) modulo 998244353.

Sample Input

15 11 2 3 4 5

Sample Output

42

Author: LIN, Xi
Source: The 15th Zhejiang University Programming Contest


题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5480


题目大意:给一个集合,{xi}为它的一个非空子集,设E为[gcd(x1,x2,…,xm)]k  的期望,求E*(2^n - 1) mod 998244353


题目分析:首先一个有n个元素的集合的非空子集个数为2^n - 1,所以E的分母就是2^n - 1了,因此我们要求的只是E的分子,

设F(x)为gcd(xi) = x的个数,那么ans = (1^k) * F(1) + (2^k) * F(2) + ... + (ma^k) * F(ma)

下面的问题就是如何快速的计算F(x)了,对于一个集合,先计算出x的倍数的个数,nlogn即可,然后就是基础的容斥,假设现在要求gcd为1的,那就减去gcd为2的,gcd为3的,注意到6同时是2和3的倍数,也就是6的倍数被减了两次,所以要加上gcd为6的,前面的系数刚好是数字对应的莫比乌斯函数,看到这题很多用dp来容斥的,其实本质和莫比乌斯函数一样,但是莫比乌斯函数写起来真的很简单,2333333


#include <cstdio>#include <cstring>#include <algorithm>#define ll long longusing namespace std;int const MOD = 998244353;int const MAX = 1e6 + 5;ll two[MAX];int p[MAX], mob[MAX], num[MAX], cnt[MAX];bool noprime[MAX];int n, k, ma, pnum;void Mobius(){    pnum = 0;    mob[1] = 1;    for(int i = 2; i < MAX; i++)    {        if(!noprime[i])        {            p[pnum ++] = i;            mob[i] = -1;        }        for(int j = 0; j < pnum && i * p[j] < MAX; j++)        {            noprime[i * p[j]] = true;            if(i % p[j] == 0)            {                mob[i * p[j]] = 0;                break;            }            mob[i * p[j]] = -mob[i];        }    }}ll qpow(ll x, ll n){    ll res = 1;    while(n != 0)    {        if(n & 1)            res = (res * x) % MOD;        x = (x * x) % MOD;        n >>= 1;    }    return res;}void pre(){    Mobius();       two[0] = 1;    for(int i = 1; i < MAX; i++)        two[i] = two[i - 1] * 2ll % MOD;}int main(){    pre();    int T;    scanf("%d", &T);    while(T --)    {        memset(num, 0, sizeof(num));        memset(cnt, 0, sizeof(cnt));        ma = 0;        int tmp;        scanf("%d %d", &n, &k);        for(int i = 0; i < n; i++)        {            scanf("%d", &tmp);            cnt[tmp] ++;            ma = max(ma, tmp);        }        for(int i = 1; i <= ma; i++)            for(int j = i; j <= ma; j += i)                num[i] += cnt[j];       //求i的倍数的个数        ll ans = 0;        for(int i = 1; i <= ma; i++)    //枚举gcd        {            ll sum = 0;            for(int j = i; j <= ma; j += i)  //容斥                sum = (MOD + sum % MOD + mob[j / i] * (two[num[j]] - 1) % MOD) % MOD;            ans = (MOD + ans % MOD + (sum * qpow(i, k)) % MOD) % MOD;        }        printf("%lld\n", ans);    }}



0 0
原创粉丝点击