HDOJ 2588 GCD(欧拉函数)

来源:互联网 发布:飞腾排版软件win7 编辑:程序博客网 时间:2024/05/20 02:27

GCD

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1320    Accepted Submission(s): 597


Problem Description
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
 

Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
 

Output
For each test case,output the answer on a single line.
 

Sample Input
31 110 210000 72
 

Sample Output
16260
 
 
题意,X是区间[1,n]内的任意值,求满足与n的最大公约数>=m的X的个数。
 
解题思路:  
 
           直接计算绝对超时,所以要想到采用一些定理来进行优化。

①我们先看两个数  N = a*b,X= a*d。因为gcd ( N , X ) = a  所以b,d这两个数互质。又因为d可以是任何一个小于b的数。

 

所以d值数量的的多少就是b的欧拉函数值。

 

所以,我们可以枚举a,然后去求b,然后再求b的欧拉函数值。

 

②但是如果单纯这样全部枚举的话依旧会超时,所以我们要想一个办法去优化它。

 

我们可以折半枚举,这里的折半并不是二分的意思。

我们先看,我们枚举时,当i<sqrt(n),假设a=n / i, 当i>sqrt(n)之后 有b=n/i,我们观察到当n%i==0时,会出现一种情况,

 

就是a*b==n。所以我们就可以只需要枚举sqrt(n)种情况,然后和它对应的情况就是 n/i。

 

我们这种枚举时间会快非常多。

 

以上解析来源于豫帝的博客:点击打开链接

 

 

AC代码如下:(数论真特么难==__==)

 

 

<span style="font-size:12px;">#include<cstdio>int euler(int n){int res=n,i;for(i=2;i*i<=n;++i){if(n%i==0)   res=res/i*(i-1);while(n%i==0)   n/=i;}if(n>1)   res=res/n*(n-1);return res;}int main(){int t,n,m,i,ans;scanf("%d",&t);while(t--){ans=0;scanf("%d%d",&n,&m);for(i=1;i*i<=n;++i){if(n%i==0){if(i>=m)//i就是相当于解析中的a,下方if中n/i同理    ans+=euler(n/i);if(n/i>=m&&i*i!=n)//i*i已经在上面计算过了    ans+=euler(i);}}printf("%d\n",ans);}return 0;} </span>


 

 

 

 

0 0
原创粉丝点击