深入浅出PageRank算法

来源:互联网 发布:如何看网络直播 编辑:程序博客网 时间:2024/05/17 06:04

PageRank算法

PageRank算法是谷歌曾经独步天下的“倚天剑”,该算法由Larry Page和Sergey Brin在斯坦福大学读研时发明的,论文点击下载: The PageRank Citation Ranking: Bringing Order to the Web。

本文首先通过一些参考文献引出问题,然后给出了PageRank的几种实现算法,最后将其推广至在MapReduce框架下如何实现PageRank算法。

PageRank的核心思想有2点:

1.如果一个网页被很多其他网页链接到的话说明这个网页比较重要,也就是pagerank值会相对较高;

2.如果一个pagerank值很高的网页链接到一个其他的网页,那么被链接到的网页的pagerank值会相应地因此而提高。

下面是一张来自WikiPedia的图,每个球代表一个网页,球的大小反应了网页的pagerank值的大小。指向网页B和网页E的链接很多,所以B和E的pagerank值较高,另外,虽然很少有网页指向C,但是最重要的网页B指向了C,所以C的pagerank值比E还要大。

image

参考内容:

1.Wiki about PageRank

2.Google 的秘密- PageRank 彻底解说 中文版

3.数值分析与算法 Page 161 应用实例:Google的PageRank算法

4.Numeric Methods with Matlab 或者中文翻译版本Matlab数值计算

5.使用 MapReduce 思想计算 PageRank Page 62 PageRank和马尔可夫链

1.问题背景

来自参考内容3

image

2.数学建模

来自参考内容3,理解网页连接矩阵$G$,马尔科夫过程("网上冲浪"),转移矩阵$A$,概率$p$为用户点击当前网页中的某个链接地址的概率(一般都为0.85)。

image
image

最后得到一个等式$Ax=x$,这实际上就是求矩阵$A$的特征值为1的特征向量!

下面的内容使用圆盘定理解释了1是矩阵$A$的主特征值,所以我们可以使用幂法来求解。

关于幂法的详细介绍参考另一篇文章Numerical Methods Using Matlab: 第三章 矩阵特征值和奇异值求解

image
image

3.求解PageRank

假设有如上图右侧所示的网页链接模型。

(1) 幂法

wiki上有一个PageRank的简便算法,它不考虑转移概率,而是采用的是迭代的方式,每次都更新所有网页的pagerank值,更新的方式就是将每个网页的pagerank值平摊分给它指向的所有网页,每个网页累计所有指向它的网页平摊给它的值作为它该回合的pagerank值,直到全部网页的pagerank值收敛了或者满足一定的阈值条件就停止。

后面的MapReduce框架下PageRank算法的实现就采用了这个思想。考虑转移概率的情况和这个算法类似,乘上一个转移概率再加上一个随机跳转的概率。

image

根据上面的思想,下面Matlab代码实现可以得到各个网页的PageRank值。

n=6;i=[2 3 4 4 5 6 1 6 1];j=[1 2 2 3 3 3 4 5 6];G=sparse(i,j,1,n,n);% Power methodfor j = 1:n   L{j} = find(G(:,j));   c(j) = length(L{j});endp = .85;delta = (1-p)/n;x = ones(n,1)/n;z = zeros(n,1);cnt = 0;while max(abs(x-z)) > .0001   z = x;   x = zeros(n,1);   for j = 1:n      if c(j) == 0         x = x + z(j)/n;%转移到任意一个网页      else         x(L{j}) = x(L{j}) + z(j)/c(j);%将上次的pagerank值平摊给所有指向的网页      end   end   x = p*x + delta;   cnt = cnt+1;end

得到的向量$x$保存了各个网页的pagerank值,虽然链接数目一样,但是网页①比网页④和网页⑤都高,而网页②的pagerank值第二高,因为网页①链接到了它上面,相当于沾了网页①的光。

x =    0.2675    0.2524    0.1323    0.1698    0.0625    0.1156

这篇文章给出该算法的一个Python版本实现,该博主使用第三方模块python-graph,python-graph模块实现了很多图算法,该模块的使用示例,使用前需要先安装,代码如下:

easy_install python-graph-coreeasy_install python-graph-dot

Python版本的算法实现:

# coding=utf-8# python-graph https://code.google.com/p/python-graph/# Import graphvizimport graphviz as gv# Import pygraphfrom pygraph.classes.digraph import digraphfrom pygraph.readwrite.dot import write# Define pagerank functiondef pagerank(graph, damping_factor=0.85, max_iterations=100, \             min_delta=0.00001):    """    Compute and return the PageRank in an directed graph.    @type  graph: digraph    @param graph: Digraph.    @type  damping_factor: number    @param damping_factor: PageRank dumping factor.    @type  max_iterations: number    @param max_iterations: Maximum number of iterations.    @type  min_delta: number    @param min_delta: Smallest variation required for a new iteration.    @rtype:  Dict    @return: Dict containing all the nodes PageRank.    """    nodes = graph.nodes()    graph_size = len(nodes)    if graph_size == 0:        return {}    # value for nodes without inbound links    min_value = (1.0-damping_factor)/graph_size    # itialize the page rank dict with 1/N for all nodes    #pagerank = dict.fromkeys(nodes, 1.0/graph_size)    pagerank = dict.fromkeys(nodes, 1.0)    for i in range(max_iterations):        diff = 0 #total difference compared to last iteraction        # computes each node PageRank based on inbound links        for node in nodes:            rank = min_value            for referring_page in graph.incidents(node):                rank += damping_factor * pagerank[referring_page] / \                        len(graph.neighbors(referring_page))            diff += abs(pagerank[node] - rank)            pagerank[node] = rank        print 'This is NO.%s iteration' % (i+1)        print pagerank        print ''        #stop if PageRank has converged        if diff < min_delta:            break    return pagerank# Graph creationgr = digraph()# Add nodes and edgesgr.add_nodes(["1","2","3","4"])gr.add_edge(("1","2"))gr.add_edge(("1","3"))gr.add_edge(("1","4"))gr.add_edge(("2","3"))gr.add_edge(("2","4"))gr.add_edge(("3","4"))gr.add_edge(("4","2"))# Draw as PNG# dot = write(gr)# gvv = gv.readstring(dot)# gv.layout(gvv,'dot')# gv.render(gvv,'png','Model.png')pagerank(gr)

经过32次迭代之后得到的结果如下,和前面的结果一致:

This is NO.32 iteration{'1': 0.2675338708706491, '3': 0.13227261904986046, '2': 0.2524037902400518, '5': 0.062477242064127136, '4': 0.1697488529161491, '6': 0.1155828978186352}

(2) 利用马尔可夫矩阵的特殊结构

来自参考内容4,其中$\delta=\frac{1-p}{n}$

image

也就是将矩阵$A$进行分解,并不需要显示求出矩阵$A$,然后便是求解一个线性方程组即可。

function x = pagerank1(G)% PAGERANK1  Google's PageRank modified version 1 - hujiawei%if nargin < 3, p = .85; endp=0.85;% Eliminate any self-referential linksG = G - diag(diag(G));% c = out-degree, r = in-degree[n,n] = size(G);c = sum(G,1);%each row's sumr = sum(G,2);%each col's sum% Scale column sums to be 1 (or 0 where there are no out links).k = find(c~=0);D = sparse(k,k,1./c(k),n,n);% Solve (I - p*G*D)*x = ee = ones(n,1);I = speye(n,n);x = (I - p*G*D)\e;% Normalize so that sum(x) == 1.x = x/sum(x);

(3) 巧妙解法:逆迭代算法

巧妙利用Matlab中的精度误差导致原本是一个奇异矩阵的$I-A$变成一个非奇异矩阵,运行时只是会有些警告提示,但是运行结果和其他算法一样。

image

function x = pagerank2(G)% PAGERANK1  Google's PageRank modified version 2 - hujiawei% using inverse iteration method%if nargin < 3, p = .85; endp=0.85;% Eliminate any self-referential linksG = G - diag(diag(G));% c = out-degree, r = in-degree[n,n] = size(G);c = sum(G,1);%each row's sumr = sum(G,2);%each col's sum% Scale column sums to be 1 (or 0 where there are no out links).k = find(c~=0);D = sparse(k,k,1./c(k),n,n);% Solve (I - p*G*D)*x = ee = ones(n,1);I = speye(n,n);% x = (I - p*G*D)\e;delta=(1-p)/n;A=p*G*D+delta;x=(I-A)\e;% Normalize so that sum(x) == 1.x = x/sum(x);

最后,附上参考内容4中给出的一份好代码,用于模拟随机冲浪生成矩阵$G$的代码

function [U,G] = surfer(root,n)% SURFER  Create the adjacency graph of a portion of the Web.%    [U,G] = surfer(root,n) starts at the URL root and follows%    Web links until it forms an adjacency graph with n nodes.%    U = a cell array of n strings, the URLs of the nodes.%    G = an n-by-n sparse matrix with G(i,j)=1 if node j is linked to node i.%%    Example:  [U,G] = surfer('http://www.harvard.edu',500);%    See also PAGERANK.%%    This function currently has two defects.  (1) The algorithm for%    finding links is naive.  We just look for the string 'http:'.%    (2) An attempt to read from a URL that is accessible, but very slow,%    might take an unacceptably long time to complete.  In some cases,%    it may be necessary to have the operating system terminate MATLAB.%    Key words from such URLs can be added to the skip list in surfer.m.% Initializeclfshgset(gcf,'doublebuffer','on')axis([0 n 0 n])axis squareaxis ijbox onset(gca,'position',[.12 .20 .78 .78])uicontrol('style','frame','units','normal','position',[.01 .09 .98 .07]);uicontrol('style','frame','units','normal','position',[.01 .01 .98 .07]);t1 = uicontrol('style','text','units','normal','position',[.02 .10 .94 .04], ...   'horiz','left');t2 = uicontrol('style','text','units','normal','position',[.02 .02 .94 .04], ...   'horiz','left');slow = uicontrol('style','toggle','units','normal', ...   'position',[.01 .24 .07 .05],'string','slow','value',0);quit = uicontrol('style','toggle','units','normal', ...   'position',[.01 .17 .07 .05],'string','quit','value',0);U = cell(n,1);hash = zeros(n,1);G = logical(sparse(n,n));m = 1;U{m} = root;hash(m) = hashfun(root);j = 1;while j < n & get(quit,'value') == 0   % Try to open a page.   try      set(t1,'string',sprintf('%5d %s',j,U{j}))      set(t2,'string','');      drawnow      page = urlread(U{j});   catch      set(t1,'string',sprintf('fail: %5d %s',j,U{j}))      drawnow      continue   end   if get(slow,'value')      pause(.25)   end   % Follow the links from the open page.   for f = findstr('http:',page);      % A link starts with 'http:' and ends with the next quote.      e = min([findstr('"',page(f:end)) findstr('''',page(f:end))]);      if isempty(e), continue, end      url = deblank(page(f:f+e-2));      url(url<' ') = '!';   % Nonprintable characters      if url(end) == '/', url(end) = []; end      % Look for links that should be skipped.      skips = {'.gif','.jpg','.pdf','.css','lmscadsi','cybernet', ...               'search.cgi','.ram','www.w3.org', ...               'scripts','netscape','shockwave','webex','fansonly'};      skip = any(url=='!') | any(url=='?');      k = 0;      while ~skip & (k < length(skips))         k = k+1;         skip = ~isempty(findstr(url,skips{k}));      end      if skip         if isempty(findstr(url,'.gif')) & isempty(findstr(url,'.jpg'))            set(t2,'string',sprintf('skip: %s',url))            drawnow            if get(slow,'value')               pause(.25)            end         end         continue      end      % Check if page is already in url list.      i = 0;      for k = find(hash(1:m) == hashfun(url))';         if isequal(U{k},url)            i = k;            break         end      end      % Add a new url to the graph there if are fewer than n.      if (i == 0) & (m < n)         m = m+1;         U{m} = url;         hash(m) = hashfun(url);         i = m;      end      % Add a new link.      if i > 0         G(i,j) = 1;         set(t2,'string',sprintf('%5d %s',i,url))         line(j,i,'marker','.','markersize',6)         drawnow         if get(slow,'value')            pause(.25)         end      end   end   j = j+1;enddelete(t1)delete(t2)delete(slow)set(quit,'string','close','callback','close(gcf)','value',0)%------------------------function h = hashfun(url)% Almost unique numeric hash code for pages already visited.h = length(url) + 1024*sum(url);

4.MapReduce框架下PageRank算法的实现

利用前面wiki上的迭代(或者幂法)的思想来实现MapReduce框架下PageRank算法很简单,可以先阅读下参考内容5。

这篇文章using-mapreduce-to-compute-pagerank更加详细,可以参考

以下是我的大数据的一次作业,要求是参考wiki上的简便算法,实现MapReduce框架下的PageRank算法。给的数据集是Twitter的用户之间的关系,可以看做是网页之间的关系,但是助教没要求写代码以及运行这个数据集(有1G多),所以下面只是一个Python版本的理想可行版本,并没有通过实际大数据集的验证,另外,博主暂时还不太会Python的mapreduce框架中的一些函数,所以实现的是一个简明的可以测试的PageRank算法。

1.输入输出格式

map函数的输入是<节点,从该节点引出的边列表>,其中节点是一个类,包含了其当前的pagerank值,输出是<节点,反向节点pagerank值/反向节点引出边的总数>;

reduce函数的输入是<节点,反向节点pagerank值/反向节点引出边的总数>,输出是<节点,从该节点引出的边列表>,其中节点包含了其更新后的pagerank值。

伪代码: [一时犯二写了个英文形式的 ]

process the data to the form of {node i:[its adjacent node list],...}while the sum of difference between the last two pagerank values < threshold    map({node i:[its adjacent node list],...}):        map_output={}        for every node j in adjacent node list:            put or sum up {j:(i, PageRank(i)/length(adjacent node list))} into map_output        return map_output    reduce(map_output):        reduce_output={}        for every entry {j:(i, PageRank(i)/length(adjacent node list))} in map_output:            put or sum up all values pagerank values for node j with its adjacent node list into reduce_output        return reduce_output

2.示例演示

假设用户1,2,3,4是如下图所示的关系:

image

假设有2个mapper(A和B)和1个reducer(C),初始时4个节点的pagerank值都是0.25

其中,关于用户1和2的数据被mapperA读取并处理,关于用户3和4的数据被mapperB读取并处理 [经验证,即使一个用户的数据是由不同的mapper来读取的,最终收敛到的结果差不多]

map的输入输出结果如下:

image

reduce的输入输出结果如下,输入是2个mapper的输出,输出的结果中更新了节点的pagerank值

image

reducer处理完了之后又将它的结果输入给mapper处理,直到迭代的次数超过了设定值或者两次迭代之后得到的所有节点的pagerank值之差的总和(也可以是取二范数)小于设定的阈值。

3.示例的实验结果

(1)首先是使用Matlab采用幂法的方式计算出在p=1.0的情况下示例得到的结果 [它的主要作用是验证后面python版本的正确性]

matlab源码如下:

n=4;i=[2 3 4 3 4 4 1 2];j=[1 1 1 2 2 3 3 4];G=sparse(i,j,1,n,n);[n,n] = size(G);for j = 1:n   L{j} = find(G(:,j));   c(j) = length(L{j});end% Power methodp=1.0;delta = (1-p)/n;x = ones(n,1)/n;z = zeros(n,1);cnt = 0;while max(abs(x-z)) > .0001   z = x;   x = zeros(n,1);   for j = 1:n      if c(j) == 0         x = x + z(j)/n;      else         x(L{j}) = x(L{j}) + z(j)/c(j);      end   end   x = p*x + delta;   cnt = cnt+1;endsprintf('pagerank result:')x

结果为:

0.10720.35710.21430.3214

(2)matlab版本的page rank没有采用mapreduce的思想进行迭代,所以我另外写了一个python版本的利用mapreduce思想实现的pagerank算法(注:我并没有使用python的map和reduce函数去实现,而是使用更加容易明白的实现),使用的阈值为0.0001,最多迭代的次数为100次。

# coding=utf-8__author__ = 'hujiawei'__doc__ = 'pagerank mapreduce'class Node:    def __init__(self,id,pk):        self.id=id        self.pk=pkdef pk_map(map_input):    map_output={}    for node,outlinks in map_input.items():        for link in outlinks:            size=len(outlinks)            if link in map_output:                map_output[link]+=(float)(node.pk)/size            else:                map_output[link]=(float)(node.pk)/size    return map_outputdef pk_reduce(reduce_input):    for result in reduce_input:        for node,value in result.items():            node.pk+=valuedef pk_clear(nodes):    for node in nodes:        node.pk=0def pk_last(nodes):    lastnodes=[]    for node in nodes:        lastnodes.append(Node(node.id,node.pk))    return lastnodesdef pk_diff(nodes,lastnodes):    diff=0    for i in range(len(nodes)):        print('node pk %f, last node pk %f ' % (nodes[i].pk, lastnodes[i].pk))        diff+=abs(nodes[i].pk-lastnodes[i].pk)    return diffdef pk_test1():    node1 = Node(1, 0.25)    node2 = Node(2, 0.25)    node3 = Node(3, 0.25)    node4 = Node(4, 0.25)    nodes = [node1, node2, node3, node4]    threshold = 0.0001    max_iters = 100    for iter_count in range(max_iters):        iter_count += 1        lastnodes=pk_last(nodes)        print('============ map count %d =================' % (iter_count))        in1 = {node1: [node2, node3, node4], node2: [node3, node4]}        in2 = {node3: [node1, node4], node4: [node2]}        mapout1 = pk_map(in1)        mapout2 = pk_map(in2)        for node, value in mapout1.items():            print str(node.id) + ' ' + str(value)        for node, value in mapout2.items():            print str(node.id) + ' ' + str(value)        print('============ reduce count %d =================' % (iter_count))        reducein = [mapout1, mapout2]        pk_clear(nodes)        pk_reduce(reducein)        for node in nodes:            print str(node.id) + ' ' + str(node.pk)        diff=pk_diff(nodes,lastnodes)        if diff < threshold:            breakif __name__ == '__main__':    pk_test1()

得到的结果为如下,总共迭代了15次

1 0.1071387745772 0.357129248593 0.2142966011284 0.321435375705

上面的结果和Matlab用幂法得到的pagerank值差别很小,可以认为是正确的,所以说明了使用这种mapreduce输入输出格式的正确性。

OK,差不多了,希望对需要理解PageRank算法的人有帮助! :-)

0 0
原创粉丝点击