ID3算法

来源:互联网 发布:怎么取消淘宝小二介入 编辑:程序博客网 时间:2024/05/01 02:39

ID3算法是决策树算法中的一种,决策树的具体教程可以看这里http://blog.csdn.net/ritchiewang/article/details/46008643

ID3算法的大致思路:从根节点开始,对接点计算所有可能的特征的信息增益,选择信息增益最大的特征作为结点的特征,由该特征的不同取值建立子结点;再对子结点递归地调用以上方法,构建决策树;直到所有特征的信息增益均很小或没有特征可以选择为止,最后得到一个决策树。
利用ID3算法创建的决策树,是只针对于分类属性的。

具体算法步骤:

输入:训练数据集D,特征集A,阈值e
输出:决策树T
1. 若D中所有实例属于同一个类C,则T为单结点树,并将类C作为该结点的类标记,返回T
2. 若A=,则T为单结点树,并将D中实例数最大的类C作为该结点的类标记,返回T
3. 否则,计算A中各特征对D的信息增益,选择信息增益最大的特征Ak
4. 如果Ak的信息增益小于阈值e,则置T为单结点树,并将D中实例数最大的类C作为该结点的类标记,返回T
5. 否则,对Ak的每一个可能值ai,依Ak=ai将D分割为若干非空子集Di,将属性Ak作为一个结点,其每个属性值ai作为一个分支,分别构建子结点,由结点及其子结点构成树T,返回T
6. 对第i各子结点,以Di为训练集,以A{Ak}为特征集,递归地调用步骤(1)~(5),得到子树Ti,返回Ti

代码实现

# 加载数据def loadDataSet(dataPath):      dataset = []      with open(dataPath) as file:          lines = file.readlines()          for line in lines:              values = line.strip().split(' ')              dataset.append(values)      return dataset  # 数据集分割,返回属性axis的值为value的数据子集,子集中不包含axis属性def splitDataSet(dataset, axis, value):      retDataSet = []      for featVec in dataset:          if featVec[axis] == value:              reducedFeatVec = featVec[:axis]              reducedFeatVec.extend(featVec[axis+1:])              retDataSet.append(reducedFeatVec)      return retDataSet  # 计算数据集的信息熵def calShannonEnt(dataset):      numEntries = len(dataset) * 1.0      labelCounts = dict()      for featVec in dataset:          currentLabel = featVec[-1]          if currentLabel not in labelCounts.keys():              labelCounts[currentLabel] = 0          labelCounts[currentLabel] += 1      shannonEnt = 0.0      for key in labelCounts:          prob = labelCounts[key] / numEntries          import math          shannonEnt -= prob * math.log(prob, 2)      return shannonEnt  # 计算数据子集相较于原数据集的信息增益def InfoGain(dataset, axis, baseShannonEnt):      featList = [example[axis] for example in dataset]      uniqueVals = set(featList)      newShannonEnt = 0.0      numEntries = len(dataset) * 1.0      for value in uniqueVals:          subDataSet = splitDataSet(dataset, axis, value)          ent = calShannonEnt(subDataSet)          prob = len(subDataSet) / numEntries          newShannonEnt += prob * ent      infoGain = baseShannonEnt - newShannonEnt      return infoGain# 根据不同属性的信息增益,进行属性选择def ChooseBestFeatureByInfoGain(dataset):      numFeature = len(dataset[0]) - 1      baseShannonEnt = calShannonEnt(dataset)      bestInfoGain = 0.0      bestFeature = -1      for i in range(numFeature):          infoGain = InfoGain(dataset, i, baseShannonEnt)          if infoGain > bestInfoGain:              bestInfoGain = infoGain              bestFeature = i      return bestFeature# 递归地创建决策树def createTree(dataset, labels):      classList = [example[-1] for example in dataset]      if classList.count(classList[0]) == len(classList):          return classList[0]      if len(dataset[0]) == 1:          return majorityCnt(classList)      bestFeature = ChooseBestFeatureByInfoGain(dataset)      bestFeatureLabel = labels[bestFeature]      myTree = {bestFeatureLabel:{}}      del(labels[bestFeature])      featValues = [example[bestFeature] for example in dataset]      uniqueVals = set(featValues)      for value in uniqueVals:          subLabels = labels[:]          myTree[bestFeatureLabel][value] = \         createTree(splitDataSet(dataset, bestFeature, value), subLabels)      return myTree  
0 0
原创粉丝点击