x265-1.7版本-common/pixel.cpp注释

来源:互联网 发布:js json根据key取值 编辑:程序博客网 时间:2024/05/22 18:23

注:问号以及未注释部分 会在x265-1.8版本内更新 

/***************************************************************************** * Copyright (C) 2013 x265 project * * Authors: Steve Borho <steve@borho.org> *          Mandar Gurav <mandar@multicorewareinc.com> *          Mahesh Pittala <mahesh@multicorewareinc.com> *          Min Chen <min.chen@multicorewareinc.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA. * * This program is also available under a commercial proprietary license. * For more information, contact us at license @ x265.com. *****************************************************************************/#include "common.h"#include "primitives.h"#include "x265.h"#include <cstdlib> // abs()using namespace x265;namespace {// place functions in anonymous namespace (file static)/** 函数功能      : 计算SAD(8位)/*\参数          lx:块的宽度/*\参数          ly:块的高度/*\参数        pix1:计算块的首地址/*\参数 stride_pix1:计算块的步长/*\参数        pix2:参考块的首地址/*\参数 stride_pix2:参考块的步长* \返回            :返回SAD值 */template<int lx, int ly>int sad(const pixel* pix1, intptr_t stride_pix1, const pixel* pix2, intptr_t stride_pix2){    int sum = 0;    for (int y = 0; y < ly; y++)    {        for (int x = 0; x < lx; x++)            sum += abs(pix1[x] - pix2[x]);        pix1 += stride_pix1;        pix2 += stride_pix2;    }    return sum;}/** 函数功能      : 计算SAD(16位)/*\参数          lx:块的宽度/*\参数          ly:块的高度/*\参数        pix1:计算块的首地址/*\参数 stride_pix1:计算块的步长/*\参数        pix2:参考块的首地址/*\参数 stride_pix2:参考块的步长* \返回            :返回SAD值 */template<int lx, int ly>int sad(const int16_t* pix1, intptr_t stride_pix1, const int16_t* pix2, intptr_t stride_pix2){    int sum = 0;    for (int y = 0; y < ly; y++)    {        for (int x = 0; x < lx; x++)            sum += abs(pix1[x] - pix2[x]);        pix1 += stride_pix1;        pix2 += stride_pix2;    }    return sum;}/** 函数功能      : 同时计算3个MV对应的3个SAD值/*  调用范围      : ME中/*\参数          lx:块的宽度/*\参数          ly:块的高度/*\参数        pix1:计算块的首地址/*\参数        pix2:参考块的首地址/*\参数        pix3:参考块的首地址/*\参数        pix4:参考块的首地址/*\参数  frefstride:参考块的步长/*\参数         res:存储3个MV对应的3个SAD值* \返回            :null */template<int lx, int ly>void sad_x3(const pixel* pix1, const pixel* pix2, const pixel* pix3, const pixel* pix4, intptr_t frefstride, int32_t* res){    res[0] = 0;    res[1] = 0;    res[2] = 0;    for (int y = 0; y < ly; y++)    {        for (int x = 0; x < lx; x++)        {            res[0] += abs(pix1[x] - pix2[x]);            res[1] += abs(pix1[x] - pix3[x]);            res[2] += abs(pix1[x] - pix4[x]);        }        pix1 += FENC_STRIDE;  //搜索块统一步长都为64        pix2 += frefstride;        pix3 += frefstride;        pix4 += frefstride;    }}/** 函数功能      : 同时计算4个MV对应的4个SAD值/*  调用范围      : ME中/*\参数          lx:块的宽度/*\参数          ly:块的高度/*\参数        pix1:计算块的首地址/*\参数        pix2:参考块的首地址/*\参数        pix3:参考块的首地址/*\参数        pix4:参考块的首地址/*\参数        pix5:参考块的首地址/*\参数  frefstride:参考块的步长/*\参数         res:存储4个MV对应的4个SAD值* \返回            :null */template<int lx, int ly>void sad_x4(const pixel* pix1, const pixel* pix2, const pixel* pix3, const pixel* pix4, const pixel* pix5, intptr_t frefstride, int32_t* res){    res[0] = 0;    res[1] = 0;    res[2] = 0;    res[3] = 0;    for (int y = 0; y < ly; y++)    {        for (int x = 0; x < lx; x++)        {            res[0] += abs(pix1[x] - pix2[x]);            res[1] += abs(pix1[x] - pix3[x]);            res[2] += abs(pix1[x] - pix4[x]);            res[3] += abs(pix1[x] - pix5[x]);        }        pix1 += FENC_STRIDE;//搜索块统一步长都为64        pix2 += frefstride;        pix3 += frefstride;        pix4 += frefstride;        pix5 += frefstride;    }}template<int lx, int ly, class T1, class T2>int sse(const T1* pix1, intptr_t stride_pix1, const T2* pix2, intptr_t stride_pix2){    int sum = 0;    int tmp;    for (int y = 0; y < ly; y++)    {        for (int x = 0; x < lx; x++)        {            tmp = pix1[x] - pix2[x];            sum += (tmp * tmp);        }        pix1 += stride_pix1;        pix2 += stride_pix2;    }    return sum;}#define BITS_PER_SUM (8 * sizeof(sum_t))#define HADAMARD4(d0, d1, d2, d3, s0, s1, s2, s3) { \        sum2_t t0 = s0 + s1; \        sum2_t t1 = s0 - s1; \        sum2_t t2 = s2 + s3; \        sum2_t t3 = s2 - s3; \        d0 = t0 + t2; \        d2 = t0 - t2; \        d1 = t1 + t3; \        d3 = t1 - t3; \}// in: a pseudo-simd number of the form x+(y<<16)// return: abs(x)+(abs(y)<<16)inline sum2_t abs2(sum2_t a){    sum2_t s = ((a >> (BITS_PER_SUM - 1)) & (((sum2_t)1 << BITS_PER_SUM) + 1)) * ((sum_t)-1);    return (a + s) ^ s;}int satd_4x4(const pixel* pix1, intptr_t stride_pix1, const pixel* pix2, intptr_t stride_pix2){    sum2_t tmp[4][2];    sum2_t a0, a1, a2, a3, b0, b1;    sum2_t sum = 0;    for (int i = 0; i < 4; i++, pix1 += stride_pix1, pix2 += stride_pix2)    {        a0 = pix1[0] - pix2[0];        a1 = pix1[1] - pix2[1];        b0 = (a0 + a1) + ((a0 - a1) << BITS_PER_SUM);        a2 = pix1[2] - pix2[2];        a3 = pix1[3] - pix2[3];        b1 = (a2 + a3) + ((a2 - a3) << BITS_PER_SUM);        tmp[i][0] = b0 + b1;        tmp[i][1] = b0 - b1;    }    for (int i = 0; i < 2; i++)    {        HADAMARD4(a0, a1, a2, a3, tmp[0][i], tmp[1][i], tmp[2][i], tmp[3][i]);        a0 = abs2(a0) + abs2(a1) + abs2(a2) + abs2(a3);        sum += ((sum_t)a0) + (a0 >> BITS_PER_SUM);    }    return (int)(sum >> 1);}static int satd_4x4(const int16_t* pix1, intptr_t stride_pix1){    int32_t tmp[4][4];    int32_t s01, s23, d01, d23;    int32_t satd = 0;    int d;    for (d = 0; d < 4; d++, pix1 += stride_pix1)    {        s01 = pix1[0] + pix1[1];        s23 = pix1[2] + pix1[3];        d01 = pix1[0] - pix1[1];        d23 = pix1[2] - pix1[3];        tmp[d][0] = s01 + s23;        tmp[d][1] = s01 - s23;        tmp[d][2] = d01 - d23;        tmp[d][3] = d01 + d23;    }    for (d = 0; d < 4; d++)    {        s01 = tmp[0][d] + tmp[1][d];        s23 = tmp[2][d] + tmp[3][d];        d01 = tmp[0][d] - tmp[1][d];        d23 = tmp[2][d] - tmp[3][d];        satd += abs(s01 + s23) + abs(s01 - s23) + abs(d01 - d23) + abs(d01 + d23);    }    return (int)(satd / 2);}// x264's SWAR version of satd 8x4, performs two 4x4 SATDs at onceint satd_8x4(const pixel* pix1, intptr_t stride_pix1, const pixel* pix2, intptr_t stride_pix2){    sum2_t tmp[4][4];    sum2_t a0, a1, a2, a3;    sum2_t sum = 0;    for (int i = 0; i < 4; i++, pix1 += stride_pix1, pix2 += stride_pix2)    {        a0 = (pix1[0] - pix2[0]) + ((sum2_t)(pix1[4] - pix2[4]) << BITS_PER_SUM);        a1 = (pix1[1] - pix2[1]) + ((sum2_t)(pix1[5] - pix2[5]) << BITS_PER_SUM);        a2 = (pix1[2] - pix2[2]) + ((sum2_t)(pix1[6] - pix2[6]) << BITS_PER_SUM);        a3 = (pix1[3] - pix2[3]) + ((sum2_t)(pix1[7] - pix2[7]) << BITS_PER_SUM);        HADAMARD4(tmp[i][0], tmp[i][1], tmp[i][2], tmp[i][3], a0, a1, a2, a3);    }    for (int i = 0; i < 4; i++)    {        HADAMARD4(a0, a1, a2, a3, tmp[0][i], tmp[1][i], tmp[2][i], tmp[3][i]);        sum += abs2(a0) + abs2(a1) + abs2(a2) + abs2(a3);    }    return (((sum_t)sum) + (sum >> BITS_PER_SUM)) >> 1;}template<int w, int h>// calculate satd in blocks of 4x4int satd4(const pixel* pix1, intptr_t stride_pix1, const pixel* pix2, intptr_t stride_pix2){    int satd = 0;    for (int row = 0; row < h; row += 4)        for (int col = 0; col < w; col += 4)            satd += satd_4x4(pix1 + row * stride_pix1 + col, stride_pix1,                             pix2 + row * stride_pix2 + col, stride_pix2);    return satd;}template<int w, int h>// calculate satd in blocks of 8x4int satd8(const pixel* pix1, intptr_t stride_pix1, const pixel* pix2, intptr_t stride_pix2){    int satd = 0;    for (int row = 0; row < h; row += 4)        for (int col = 0; col < w; col += 8)            satd += satd_8x4(pix1 + row * stride_pix1 + col, stride_pix1,                             pix2 + row * stride_pix2 + col, stride_pix2);    return satd;}inline int _sa8d_8x8(const pixel* pix1, intptr_t i_pix1, const pixel* pix2, intptr_t i_pix2){    sum2_t tmp[8][4];    sum2_t a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3;    sum2_t sum = 0;    for (int i = 0; i < 8; i++, pix1 += i_pix1, pix2 += i_pix2)    {        a0 = pix1[0] - pix2[0];        a1 = pix1[1] - pix2[1];        b0 = (a0 + a1) + ((a0 - a1) << BITS_PER_SUM);        a2 = pix1[2] - pix2[2];        a3 = pix1[3] - pix2[3];        b1 = (a2 + a3) + ((a2 - a3) << BITS_PER_SUM);        a4 = pix1[4] - pix2[4];        a5 = pix1[5] - pix2[5];        b2 = (a4 + a5) + ((a4 - a5) << BITS_PER_SUM);        a6 = pix1[6] - pix2[6];        a7 = pix1[7] - pix2[7];        b3 = (a6 + a7) + ((a6 - a7) << BITS_PER_SUM);        HADAMARD4(tmp[i][0], tmp[i][1], tmp[i][2], tmp[i][3], b0, b1, b2, b3);    }    for (int i = 0; i < 4; i++)    {        HADAMARD4(a0, a1, a2, a3, tmp[0][i], tmp[1][i], tmp[2][i], tmp[3][i]);        HADAMARD4(a4, a5, a6, a7, tmp[4][i], tmp[5][i], tmp[6][i], tmp[7][i]);        b0  = abs2(a0 + a4) + abs2(a0 - a4);        b0 += abs2(a1 + a5) + abs2(a1 - a5);        b0 += abs2(a2 + a6) + abs2(a2 - a6);        b0 += abs2(a3 + a7) + abs2(a3 - a7);        sum += (sum_t)b0 + (b0 >> BITS_PER_SUM);    }    return (int)sum;}int sa8d_8x8(const pixel* pix1, intptr_t i_pix1, const pixel* pix2, intptr_t i_pix2){    return (int)((_sa8d_8x8(pix1, i_pix1, pix2, i_pix2) + 2) >> 2);}inline int _sa8d_8x8(const int16_t* pix1, intptr_t i_pix1){    int32_t tmp[8][8];    int32_t a0, a1, a2, a3, a4, a5, a6, a7;    int32_t sum = 0;    for (int i = 0; i < 8; i++, pix1 += i_pix1)    {        a0 = pix1[0] + pix1[1];        a1 = pix1[2] + pix1[3];        a2 = pix1[4] + pix1[5];        a3 = pix1[6] + pix1[7];        a4 = pix1[0] - pix1[1];        a5 = pix1[2] - pix1[3];        a6 = pix1[4] - pix1[5];        a7 = pix1[6] - pix1[7];        tmp[i][0] = (a0 + a1) + (a2 + a3);        tmp[i][1] = (a0 + a1) - (a2 + a3);        tmp[i][2] = (a0 - a1) + (a2 - a3);        tmp[i][3] = (a0 - a1) - (a2 - a3);        tmp[i][4] = (a4 + a5) + (a6 + a7);        tmp[i][5] = (a4 + a5) - (a6 + a7);        tmp[i][6] = (a4 - a5) + (a6 - a7);        tmp[i][7] = (a4 - a5) - (a6 - a7);    }    for (int i = 0; i < 8; i++)    {        a0 = (tmp[0][i] + tmp[1][i]) + (tmp[2][i] + tmp[3][i]);        a2 = (tmp[0][i] + tmp[1][i]) - (tmp[2][i] + tmp[3][i]);        a1 = (tmp[0][i] - tmp[1][i]) + (tmp[2][i] - tmp[3][i]);        a3 = (tmp[0][i] - tmp[1][i]) - (tmp[2][i] - tmp[3][i]);        a4 = (tmp[4][i] + tmp[5][i]) + (tmp[6][i] + tmp[7][i]);        a6 = (tmp[4][i] + tmp[5][i]) - (tmp[6][i] + tmp[7][i]);        a5 = (tmp[4][i] - tmp[5][i]) + (tmp[6][i] - tmp[7][i]);        a7 = (tmp[4][i] - tmp[5][i]) - (tmp[6][i] - tmp[7][i]);        a0 = abs(a0 + a4) + abs(a0 - a4);        a0 += abs(a1 + a5) + abs(a1 - a5);        a0 += abs(a2 + a6) + abs(a2 - a6);        a0 += abs(a3 + a7) + abs(a3 - a7);        sum += a0;    }    return (int)sum;}int sa8d_8x8(const int16_t* pix1, intptr_t i_pix1){    return (int)((_sa8d_8x8(pix1, i_pix1) + 2) >> 2);}int sa8d_16x16(const pixel* pix1, intptr_t i_pix1, const pixel* pix2, intptr_t i_pix2){    int sum = _sa8d_8x8(pix1, i_pix1, pix2, i_pix2)        + _sa8d_8x8(pix1 + 8, i_pix1, pix2 + 8, i_pix2)        + _sa8d_8x8(pix1 + 8 * i_pix1, i_pix1, pix2 + 8 * i_pix2, i_pix2)        + _sa8d_8x8(pix1 + 8 + 8 * i_pix1, i_pix1, pix2 + 8 + 8 * i_pix2, i_pix2);    // This matches x264 sa8d_16x16, but is slightly different from HM's behavior because    // this version only rounds once at the end    return (sum + 2) >> 2;}template<int w, int h>// Calculate sa8d in blocks of 8x8int sa8d8(const pixel* pix1, intptr_t i_pix1, const pixel* pix2, intptr_t i_pix2){    int cost = 0;    for (int y = 0; y < h; y += 8)        for (int x = 0; x < w; x += 8)            cost += sa8d_8x8(pix1 + i_pix1 * y + x, i_pix1, pix2 + i_pix2 * y + x, i_pix2);    return cost;}template<int w, int h>// Calculate sa8d in blocks of 16x16int sa8d16(const pixel* pix1, intptr_t i_pix1, const pixel* pix2, intptr_t i_pix2){    int cost = 0;    for (int y = 0; y < h; y += 16)        for (int x = 0; x < w; x += 16)            cost += sa8d_16x16(pix1 + i_pix1 * y + x, i_pix1, pix2 + i_pix2 * y + x, i_pix2);    return cost;}template<int size>int pixel_ssd_s_c(const int16_t* a, intptr_t dstride){    int sum = 0;    for (int y = 0; y < size; y++)    {        for (int x = 0; x < size; x++)            sum += a[x] * a[x];        a += dstride;    }    return sum;}template<int size>void blockfill_s_c(int16_t* dst, intptr_t dstride, int16_t val){    for (int y = 0; y < size; y++)        for (int x = 0; x < size; x++)            dst[y * dstride + x] = val;}template<int size>void cpy2Dto1D_shl(int16_t* dst, const int16_t* src, intptr_t srcStride, int shift){    X265_CHECK(((intptr_t)dst & 15) == 0, "dst alignment error\n");    X265_CHECK((((intptr_t)src | (srcStride * sizeof(*src))) & 15) == 0 || size == 4, "src alignment error\n");    X265_CHECK(shift >= 0, "invalid shift\n");    for (int i = 0; i < size; i++)    {        for (int j = 0; j < size; j++)            dst[j] = src[j] << shift;        src += srcStride;        dst += size;    }}template<int size>void cpy2Dto1D_shr(int16_t* dst, const int16_t* src, intptr_t srcStride, int shift){    X265_CHECK(((intptr_t)dst & 15) == 0, "dst alignment error\n");    X265_CHECK((((intptr_t)src | (srcStride * sizeof(*src))) & 15) == 0 || size == 4, "src alignment error\n");    X265_CHECK(shift > 0, "invalid shift\n");    int16_t round = 1 << (shift - 1);    for (int i = 0; i < size; i++)    {        for (int j = 0; j < size; j++)            dst[j] = (src[j] + round) >> shift;        src += srcStride;        dst += size;    }}template<int size>void cpy1Dto2D_shl(int16_t* dst, const int16_t* src, intptr_t dstStride, int shift){    X265_CHECK((((intptr_t)dst | (dstStride * sizeof(*dst))) & 15) == 0 || size == 4, "dst alignment error\n");    X265_CHECK(((intptr_t)src & 15) == 0, "src alignment error\n");    X265_CHECK(shift >= 0, "invalid shift\n");    for (int i = 0; i < size; i++)    {        for (int j = 0; j < size; j++)            dst[j] = src[j] << shift;        src += size;        dst += dstStride;    }}template<int size>void cpy1Dto2D_shr(int16_t* dst, const int16_t* src, intptr_t dstStride, int shift){    X265_CHECK((((intptr_t)dst | (dstStride * sizeof(*dst))) & 15) == 0 || size == 4, "dst alignment error\n");    X265_CHECK(((intptr_t)src & 15) == 0, "src alignment error\n");    X265_CHECK(shift > 0, "invalid shift\n");    int16_t round = 1 << (shift - 1);    for (int i = 0; i < size; i++)    {        for (int j = 0; j < size; j++)            dst[j] = (src[j] + round) >> shift;        src += size;        dst += dstStride;    }}template<int blockSize>void getResidual(const pixel* fenc, const pixel* pred, int16_t* residual, intptr_t stride){    for (int y = 0; y < blockSize; y++)    {        for (int x = 0; x < blockSize; x++)            residual[x] = static_cast<int16_t>(fenc[x]) - static_cast<int16_t>(pred[x]);        fenc += stride;        residual += stride;        pred += stride;    }}template<int blockSize>void transpose(pixel* dst, const pixel* src, intptr_t stride){    for (int k = 0; k < blockSize; k++)        for (int l = 0; l < blockSize; l++)            dst[k * blockSize + l] = src[l * stride + k];}void weight_sp_c(const int16_t* src, pixel* dst, intptr_t srcStride, intptr_t dstStride, int width, int height, int w0, int round, int shift, int offset){    int x, y;#if CHECKED_BUILD || _DEBUG    const int correction = (IF_INTERNAL_PREC - X265_DEPTH);    X265_CHECK(!((w0 << 6) > 32767), "w0 using more than 16 bits, asm output will mismatch\n");    X265_CHECK(!(round > 32767), "round using more than 16 bits, asm output will mismatch\n");    X265_CHECK((shift >= correction), "shift must be include factor correction, please update ASM ABI\n");#endif    for (y = 0; y <= height - 1; y++)    {        for (x = 0; x <= width - 1; )        {            // note: width can be odd            dst[x] = x265_clip(((w0 * (src[x] + IF_INTERNAL_OFFS) + round) >> shift) + offset);            x++;        }        src += srcStride;        dst += dstStride;    }}/** 函数功能             : P帧加权参考帧获取/*  调用范围             : 只在MotionReference::applyWeight、LookaheadTLD::weightCostLuma、LookaheadTLD::weightsAnalyse和weightCost函数中被调用* \参数 src              : 原始P参考帧* \参数 dst              : 加权后P参考帧* \参数 stride           : 步长* \参数 width            : 宽度* \参数 height           : 高度* \参数 w0               : 加权系数* \参数 round            : 四舍五入操作* \参数 shift            : 右移位数(前面为提高精度左移位,现在恢复原有精度)* \参数 offset           : offset信息 整帧所有像素偏移值* \返回                  : null */void weight_pp_c(const pixel* src, pixel* dst, intptr_t stride, int width, int height, int w0, int round, int shift, int offset){    int x, y;    const int correction = (IF_INTERNAL_PREC - X265_DEPTH);    X265_CHECK(!(width & 15), "weightp alignment error\n");    X265_CHECK(!((w0 << 6) > 32767), "w0 using more than 16 bits, asm output will mismatch\n");    X265_CHECK(!(round > 32767), "round using more than 16 bits, asm output will mismatch\n");    X265_CHECK((shift >= correction), "shift must be include factor correction, please update ASM ABI\n");    X265_CHECK(!(round & ((1 << correction) - 1)), "round must be include factor correction, please update ASM ABI\n");    for (y = 0; y <= height - 1; y++)    {        for (x = 0; x <= width - 1; )        {            // simulating pixel to short conversion            int16_t val = src[x] << correction;            dst[x] = x265_clip(((w0 * (val) + round) >> shift) + offset);            x++;        }        src += stride;        dst += stride;    }}/** 函数功能             : 获取两块的平均值/*\参数                lx:块的宽度/*\参数                ly:块的高度* \参数 dst              :平均后像素存储位置* \参数 dstride          :步长* \参数 src0             :块0首地址* \参数 sstride0         :块0步长* \参数 src1             :块1首地址* \参数 sstride1         :块1步长* \返回                  : null */template<int lx, int ly>void pixelavg_pp(pixel* dst, intptr_t dstride, const pixel* src0, intptr_t sstride0, const pixel* src1, intptr_t sstride1, int)//获取两块的平均值 {    for (int y = 0; y < ly; y++)    {        for (int x = 0; x < lx; x++)            dst[x] = (src0[x] + src1[x] + 1) >> 1;        src0 += sstride0;        src1 += sstride1;        dst += dstride;    }}void scale1D_128to64(pixel *dst, const pixel *src){    int x;    const pixel* src1 = src;    const pixel* src2 = src + 128;    pixel* dst1 = dst;    pixel* dst2 = dst + 64/*128*/;    for (x = 0; x < 128; x += 2)    {        // Top pixel        pixel pix0 = src1[(x + 0)];        pixel pix1 = src1[(x + 1)];        // Left pixel        pixel pix2 = src2[(x + 0)];        pixel pix3 = src2[(x + 1)];        int sum1 = pix0 + pix1;        int sum2 = pix2 + pix3;        dst1[x >> 1] = (pixel)((sum1 + 1) >> 1);        dst2[x >> 1] = (pixel)((sum2 + 1) >> 1);    }}void scale2D_64to32(pixel* dst, const pixel* src, intptr_t stride){    uint32_t x, y;    for (y = 0; y < 64; y += 2)    {        for (x = 0; x < 64; x += 2)        {            pixel pix0 = src[(y + 0) * stride + (x + 0)];            pixel pix1 = src[(y + 0) * stride + (x + 1)];            pixel pix2 = src[(y + 1) * stride + (x + 0)];            pixel pix3 = src[(y + 1) * stride + (x + 1)];            int sum = pix0 + pix1 + pix2 + pix3;            dst[y / 2 * 32 + x / 2] = (pixel)((sum + 2) >> 2);        }    }}/** 函数功能    :将原始帧视频亮度作1/2下采样/*  调用范围    :只在Lowres::init函数中被调用* \参数 src0    :原始视频帧亮度首地址:origPic->m_picOrg[0]* \参数 dst0    :lowresPlane[0]* \参数 dsth    :lowresPlane[1]* \参数 dstv    :lowresPlane[2]* \参数 dstc    :lowresPlane[3]* \参数 src_stride:原始帧亮度步长* \参数 dst_stride:下采样视频亮度步长* \参数 width     :下采样视频的宽度* \参数 heigh     :下采样视频的高度* \返回值         : null*/void frame_init_lowres_core(const pixel* src0, pixel* dst0, pixel* dsth, pixel* dstv, pixel* dstc,                            intptr_t src_stride, intptr_t dst_stride, int width, int height){    /* downscale and generate 4 hpel planes for lookahead */    /* 这样做的目的是更好的通过1/2下采样视频的编码估计原始视频编码状态       将亮度分四种方法进行1/2下采样       原始点:       82  89  86  86  93        85  89  99 101 113        96  97  97 100 104        106 108 107 111 109        127 156 133 139 137              0: 在行列选择偶数像素点为基准并选择相邻的右边、下边、右下机本身4个点作平均       * * + +       * * + +       - - # #       - - # #       87  94       102 104       87 = ((((82 + 85 + 1) >> 1) + ((89 + 89 + 1) >> 1) + 1) >> 1)       94 = ((((86 + 99 + 1) >> 1) + ((86 + 101 + 1) >> 1) + 1) >> 1)       102= ((((96 + 106 + 1) >> 1) + ((97 + 108 + 1) >> 1) + 1) >> 1)       104 = ((((97 + 107 + 1) >> 1) + ((100 + 111 + 1) >> 1) + 1) >> 1)       h: 在行选择偶数像素点,在列选择奇数像素点为基准并选择相邻的右边、下边、右下机本身4个点作平均       = * * = + +       = * * = + +       = - - = # #       = - - = # #       91  99        103 107        91 = ((((89 + 89 + 1) >> 1) + ((86 + 99 + 1) >> 1) + 1) >> 1)        99 = ((((86 + 101 + 1) >> 1) + ((93 + 113 + 1) >> 1) + 1) >> 1)        v: 在行选择奇数像素点,在列选择偶数像素点为基准并选择相邻的右边、下边、右下机本身4个点作平均       = = = =       * * + +       * * + +       = = = =       - - # #       - - # #       92 100        125 123        92 = ((((85 + 96 + 1) >> 1) + ((89 + 97 + 1) >> 1) + 1) >> 1)        在行列选择奇数像素点为基准并选择相邻的右边、下边、右下机本身4个点作平均       = = = = = =       = * * = + +       = * * = + +       = = = = = =       = - - = # #       = - - = # #       96 105       126 124       96 = ((((89 + 97 + 1) >> 1) + ((99 + 97 + 1) >> 1) + 1) >> 1)     **/    for (int y = 0; y < height; y++)    {        const pixel* src1 = src0 + src_stride;        const pixel* src2 = src1 + src_stride;        for (int x = 0; x < width; x++)        {            // slower than naive bilinear, but matches asm#define FILTER(a, b, c, d) ((((a + b + 1) >> 1) + ((c + d + 1) >> 1) + 1) >> 1)            dst0[x] = FILTER(src0[2 * x], src1[2 * x], src0[2 * x + 1], src1[2 * x + 1]);            dsth[x] = FILTER(src0[2 * x + 1], src1[2 * x + 1], src0[2 * x + 2], src1[2 * x + 2]);            dstv[x] = FILTER(src1[2 * x], src2[2 * x], src1[2 * x + 1], src2[2 * x + 1]);            dstc[x] = FILTER(src1[2 * x + 1], src2[2 * x + 1], src1[2 * x + 2], src2[2 * x + 2]);#undef FILTER        }        src0 += src_stride * 2;        dst0 += dst_stride;        dsth += dst_stride;        dstv += dst_stride;        dstc += dst_stride;    }}/* structural similarity metric */void ssim_4x4x2_core(const pixel* pix1, intptr_t stride1, const pixel* pix2, intptr_t stride2, int sums[2][4]){    for (int z = 0; z < 2; z++)    {        uint32_t s1 = 0, s2 = 0, ss = 0, s12 = 0;        for (int y = 0; y < 4; y++)        {            for (int x = 0; x < 4; x++)            {                int a = pix1[x + y * stride1];                int b = pix2[x + y * stride2];                s1 += a;                s2 += b;                ss += a * a;                ss += b * b;                s12 += a * b;            }        }        sums[z][0] = s1;        sums[z][1] = s2;        sums[z][2] = ss;        sums[z][3] = s12;        pix1 += 4;        pix2 += 4;    }}float ssim_end_1(int s1, int s2, int ss, int s12){/* Maximum value for 10-bit is: ss*64 = (2^10-1)^2*16*4*64 = 4286582784, which will overflow in some cases. * s1*s1, s2*s2, and s1*s2 also obtain this value for edge cases: ((2^10-1)*16*4)^2 = 4286582784. * Maximum value for 9-bit is: ss*64 = (2^9-1)^2*16*4*64 = 1069551616, which will not overflow. */#define PIXEL_MAX ((1 << X265_DEPTH) - 1)#if HIGH_BIT_DEPTH    X265_CHECK(X265_DEPTH == 10, "ssim invalid depth\n");#define type float    static const float ssim_c1 = (float)(.01 * .01 * PIXEL_MAX * PIXEL_MAX * 64);    static const float ssim_c2 = (float)(.03 * .03 * PIXEL_MAX * PIXEL_MAX * 64 * 63);#else    X265_CHECK(X265_DEPTH == 8, "ssim invalid depth\n");#define type int    static const int ssim_c1 = (int)(.01 * .01 * PIXEL_MAX * PIXEL_MAX * 64 + .5);    static const int ssim_c2 = (int)(.03 * .03 * PIXEL_MAX * PIXEL_MAX * 64 * 63 + .5);#endif    type fs1 = (type)s1;    type fs2 = (type)s2;    type fss = (type)ss;    type fs12 = (type)s12;    type vars = (type)(fss * 64 - fs1 * fs1 - fs2 * fs2);    type covar = (type)(fs12 * 64 - fs1 * fs2);    return (float)(2 * fs1 * fs2 + ssim_c1) * (float)(2 * covar + ssim_c2)           / ((float)(fs1 * fs1 + fs2 * fs2 + ssim_c1) * (float)(vars + ssim_c2));#undef type#undef PIXEL_MAX}float ssim_end_4(int sum0[5][4], int sum1[5][4], int width){    float ssim = 0.0;    for (int i = 0; i < width; i++)    {        ssim += ssim_end_1(sum0[i][0] + sum0[i + 1][0] + sum1[i][0] + sum1[i + 1][0],                           sum0[i][1] + sum0[i + 1][1] + sum1[i][1] + sum1[i + 1][1],                           sum0[i][2] + sum0[i + 1][2] + sum1[i][2] + sum1[i + 1][2],                           sum0[i][3] + sum0[i + 1][3] + sum1[i][3] + sum1[i + 1][3]);    }    return ssim;}/** 函数功能    :返回一个64位整数,低32位存储当前nxn所有元素的和,高32位存储当前nxn所有元素的平方和/*  调用范围    :只在Lowres::init函数中被调用* \参数 pix     :待计算的块* \参数 i_stride:步长* \返回值       :返回一个64位整数,低32位存储当前nxn所有元素的和,高32位存储当前nxn所有元素的平方和*/template<int size>uint64_t pixel_var(const pixel* pix, intptr_t i_stride){    uint32_t sum = 0, sqr = 0;    for (int y = 0; y < size; y++)    {        for (int x = 0; x < size; x++)        {            sum += pix[x];            sqr += pix[x] * pix[x];        }        pix += i_stride;    }    return sum + ((uint64_t)sqr << 32);}#if defined(_MSC_VER)#pragma warning(disable: 4127) // conditional expression is constant#endiftemplate<int size>int psyCost_pp(const pixel* source, intptr_t sstride, const pixel* recon, intptr_t rstride){    static pixel zeroBuf[8] /* = { 0 } */;    if (size)    {        int dim = 1 << (size + 2);        uint32_t totEnergy = 0;        for (int i = 0; i < dim; i += 8)        {            for (int j = 0; j < dim; j+= 8)            {                /* AC energy, measured by sa8d (AC + DC) minus SAD (DC) */                int sourceEnergy = sa8d_8x8(source + i * sstride + j, sstride, zeroBuf, 0) -                                    (sad<8, 8>(source + i * sstride + j, sstride, zeroBuf, 0) >> 2);                int reconEnergy =  sa8d_8x8(recon + i * rstride + j, rstride, zeroBuf, 0) -                                    (sad<8, 8>(recon + i * rstride + j, rstride, zeroBuf, 0) >> 2);                totEnergy += abs(sourceEnergy - reconEnergy);            }        }        return totEnergy;    }    else    {        /* 4x4 is too small for sa8d */        int sourceEnergy = satd_4x4(source, sstride, zeroBuf, 0) - (sad<4, 4>(source, sstride, zeroBuf, 0) >> 2);        int reconEnergy = satd_4x4(recon, rstride, zeroBuf, 0) - (sad<4, 4>(recon, rstride, zeroBuf, 0) >> 2);        return abs(sourceEnergy - reconEnergy);    }}template<int size>int psyCost_ss(const int16_t* source, intptr_t sstride, const int16_t* recon, intptr_t rstride){    static int16_t zeroBuf[8] /* = { 0 } */;    if (size)    {        int dim = 1 << (size + 2);        uint32_t totEnergy = 0;        for (int i = 0; i < dim; i += 8)        {            for (int j = 0; j < dim; j+= 8)            {                /* AC energy, measured by sa8d (AC + DC) minus SAD (DC) */                int sourceEnergy = sa8d_8x8(source + i * sstride + j, sstride) -                                    (sad<8, 8>(source + i * sstride + j, sstride, zeroBuf, 0) >> 2);                int reconEnergy =  sa8d_8x8(recon + i * rstride + j, rstride) -                                    (sad<8, 8>(recon + i * rstride + j, rstride, zeroBuf, 0) >> 2);                totEnergy += abs(sourceEnergy - reconEnergy);            }        }        return totEnergy;    }    else    {        /* 4x4 is too small for sa8d */        int sourceEnergy = satd_4x4(source, sstride) - (sad<4, 4>(source, sstride, zeroBuf, 0) >> 2);        int reconEnergy = satd_4x4(recon, rstride) - (sad<4, 4>(recon, rstride, zeroBuf, 0) >> 2);        return abs(sourceEnergy - reconEnergy);    }}template<int bx, int by>void blockcopy_pp_c(pixel* a, intptr_t stridea, const pixel* b, intptr_t strideb){    for (int y = 0; y < by; y++)    {        for (int x = 0; x < bx; x++)            a[x] = b[x];        a += stridea;        b += strideb;    }}template<int bx, int by>void blockcopy_ss_c(int16_t* a, intptr_t stridea, const int16_t* b, intptr_t strideb){    for (int y = 0; y < by; y++)    {        for (int x = 0; x < bx; x++)            a[x] = b[x];        a += stridea;        b += strideb;    }}template<int bx, int by>void blockcopy_sp_c(pixel* a, intptr_t stridea, const int16_t* b, intptr_t strideb){    for (int y = 0; y < by; y++)    {        for (int x = 0; x < bx; x++)        {            X265_CHECK((b[x] >= 0) && (b[x] <= ((1 << X265_DEPTH) - 1)), "blockcopy pixel size fail\n");            a[x] = (pixel)b[x];        }        a += stridea;        b += strideb;    }}template<int bx, int by>void blockcopy_ps_c(int16_t* a, intptr_t stridea, const pixel* b, intptr_t strideb){    for (int y = 0; y < by; y++)    {        for (int x = 0; x < bx; x++)            a[x] = (int16_t)b[x];        a += stridea;        b += strideb;    }}template<int bx, int by>void pixel_sub_ps_c(int16_t* a, intptr_t dstride, const pixel* b0, const pixel* b1, intptr_t sstride0, intptr_t sstride1){    for (int y = 0; y < by; y++)    {        for (int x = 0; x < bx; x++)            a[x] = (int16_t)(b0[x] - b1[x]);        b0 += sstride0;        b1 += sstride1;        a += dstride;    }}template<int bx, int by>void pixel_add_ps_c(pixel* a, intptr_t dstride, const pixel* b0, const int16_t* b1, intptr_t sstride0, intptr_t sstride1){    for (int y = 0; y < by; y++)    {        for (int x = 0; x < bx; x++)            a[x] = x265_clip(b0[x] + b1[x]);        b0 += sstride0;        b1 += sstride1;        a += dstride;    }}template<int bx, int by>void addAvg(const int16_t* src0, const int16_t* src1, pixel* dst, intptr_t src0Stride, intptr_t src1Stride, intptr_t dstStride){    int shiftNum, offset;    shiftNum = IF_INTERNAL_PREC + 1 - X265_DEPTH;    offset = (1 << (shiftNum - 1)) + 2 * IF_INTERNAL_OFFS;    for (int y = 0; y < by; y++)    {        for (int x = 0; x < bx; x += 2)        {            dst[x + 0] = x265_clip((src0[x + 0] + src1[x + 0] + offset) >> shiftNum);            dst[x + 1] = x265_clip((src0[x + 1] + src1[x + 1] + offset) >> shiftNum);        }        src0 += src0Stride;        src1 += src1Stride;        dst  += dstStride;    }}void planecopy_cp_c(const uint8_t* src, intptr_t srcStride, pixel* dst, intptr_t dstStride, int width, int height, int shift){    for (int r = 0; r < height; r++)    {        for (int c = 0; c < width; c++)            dst[c] = ((pixel)src[c]) << shift;        dst += dstStride;        src += srcStride;    }}void planecopy_sp_c(const uint16_t* src, intptr_t srcStride, pixel* dst, intptr_t dstStride, int width, int height, int shift, uint16_t mask){    for (int r = 0; r < height; r++)    {        for (int c = 0; c < width; c++)            dst[c] = (pixel)((src[c] >> shift) & mask);        dst += dstStride;        src += srcStride;    }}/** 函数功能       :计算每行的8x8的传播cost(累加传播cost + 加权intracost)*(intracost-最优cost)/intracost/*  调用范围       :只在Lookahead::estimateCUPropagate函数中被调用/*\参数         dst: 存储当前行每个8x8的传播cost/*\参数 propagateIn:当前行的传播cost存储首地址/*\参数  intraCosts:当前行的intracost/*\参数  interCosts:当前行的intercost/*\参数  invQscales:当前行的AQ offsets/*\参数   fpsFactor:当前帧的帧率因子(一般为1.0)/*\参数         len:当前行的长度* \返回            :返回SAD值 *//* Estimate the total amount of influence on future quality that could be had if we * were to improve the reference samples used to inter predict any given CU. */void estimateCUPropagateCost(int* dst, const uint16_t* propagateIn, const int32_t* intraCosts, const uint16_t* interCosts,                             const int32_t* invQscales, const double* fpsFactor, int len){    double fps = *fpsFactor / 256;   //因为invQscales存储扩大256倍的整数数据,这里除以256目的是缩放数据    for (int i = 0; i < len; i++)    {        double intraCost       = intraCosts[i] * invQscales[i]; //获取当前8x8块 加权intra cost        double propagateAmount = (double)propagateIn[i] + intraCost * fps; //累加传播cost 加上加权fps因子之后的intra cost        double propagateNum    = (double)intraCosts[i] - (interCosts[i] & ((1 << 14) - 1));//获取最优cost与intracost的差值  高14位的数字:0 表示 intra  1 表示前向搜索  2表示后向搜索  3 表示bi搜索        double propagateDenom  = (double)intraCosts[i];                                    //当前8x8块 intra cost        dst[i] = (int)(propagateAmount * propagateNum / propagateDenom + 0.5);//(累加传播cost + 加权intracost)*(intracost-最优cost)/intracost    }}}  // end anonymous namespacenamespace x265 {// x265 private namespace/* Extend the edges of a picture so that it may safely be used for motion * compensation. This function assumes the picture is stored in a buffer with * sufficient padding for the X and Y margins *//** 函数功能    :将视频帧进行扩边,便于插值和ME搜索/*  调用范围    :只在weightAnalyse和Lowres::init函数中被调用* \参数 pic     :需要进行插值的视频帧数据 * \参数 stride  :视频帧步长 * \参数 width   :视频帧宽度 * \参数 height  :视频帧高度 * \参数 marginX :两边需要扩边的宽度 * \参数 marginY :上下需要扩边的高度 * \返回值       : null*/void extendPicBorder(pixel* pic, intptr_t stride, int width, int height, int marginX, int marginY){    /* extend left and right margins */    primitives.extendRowBorder(pic, stride, width, height, marginX); //asm 代码,快速实现一行扩边    /* copy top row to create above margin */    pixel* top = pic - marginX;    for (int y = 0; y < marginY; y++)        memcpy(top - (y + 1) * stride, top, stride * sizeof(pixel));    /* copy bottom row to create below margin */    pixel* bot = pic - marginX + (height - 1) * stride;    for (int y = 0; y < marginY; y++)        memcpy(bot + (y + 1) * stride, bot, stride * sizeof(pixel));}/* Initialize entries for pixel functions defined in this file */void setupPixelPrimitives_c(EncoderPrimitives &p){#define LUMA_PU(W, H) \    p.pu[LUMA_ ## W ## x ## H].copy_pp = blockcopy_pp_c<W, H>; \    p.pu[LUMA_ ## W ## x ## H].addAvg = addAvg<W, H>; \    p.pu[LUMA_ ## W ## x ## H].sad = sad<W, H>; \    p.pu[LUMA_ ## W ## x ## H].sad_x3 = sad_x3<W, H>; \    p.pu[LUMA_ ## W ## x ## H].sad_x4 = sad_x4<W, H>; \    p.pu[LUMA_ ## W ## x ## H].pixelavg_pp = pixelavg_pp<W, H>;#define LUMA_CU(W, H) \    p.cu[BLOCK_ ## W ## x ## H].sub_ps        = pixel_sub_ps_c<W, H>; \    p.cu[BLOCK_ ## W ## x ## H].add_ps        = pixel_add_ps_c<W, H>; \    p.cu[BLOCK_ ## W ## x ## H].copy_sp       = blockcopy_sp_c<W, H>; \    p.cu[BLOCK_ ## W ## x ## H].copy_ps       = blockcopy_ps_c<W, H>; \    p.cu[BLOCK_ ## W ## x ## H].copy_ss       = blockcopy_ss_c<W, H>; \    p.cu[BLOCK_ ## W ## x ## H].blockfill_s   = blockfill_s_c<W>;  \    p.cu[BLOCK_ ## W ## x ## H].cpy2Dto1D_shl = cpy2Dto1D_shl<W>; \    p.cu[BLOCK_ ## W ## x ## H].cpy2Dto1D_shr = cpy2Dto1D_shr<W>; \    p.cu[BLOCK_ ## W ## x ## H].cpy1Dto2D_shl = cpy1Dto2D_shl<W>; \    p.cu[BLOCK_ ## W ## x ## H].cpy1Dto2D_shr = cpy1Dto2D_shr<W>; \    p.cu[BLOCK_ ## W ## x ## H].psy_cost_pp   = psyCost_pp<BLOCK_ ## W ## x ## H>; \    p.cu[BLOCK_ ## W ## x ## H].psy_cost_ss   = psyCost_ss<BLOCK_ ## W ## x ## H>; \    p.cu[BLOCK_ ## W ## x ## H].transpose     = transpose<W>; \    p.cu[BLOCK_ ## W ## x ## H].ssd_s         = pixel_ssd_s_c<W>; \    p.cu[BLOCK_ ## W ## x ## H].var           = pixel_var<W>; \    p.cu[BLOCK_ ## W ## x ## H].calcresidual  = getResidual<W>; \    p.cu[BLOCK_ ## W ## x ## H].sse_pp        = sse<W, H, pixel, pixel>; \    p.cu[BLOCK_ ## W ## x ## H].sse_ss        = sse<W, H, int16_t, int16_t>;    LUMA_PU(4, 4);    LUMA_PU(8, 8);    LUMA_PU(16, 16);    LUMA_PU(32, 32);    LUMA_PU(64, 64);    LUMA_PU(4, 8);    LUMA_PU(8, 4);    LUMA_PU(16,  8);    LUMA_PU(8, 16);    LUMA_PU(16, 12);    LUMA_PU(12, 16);    LUMA_PU(16,  4);    LUMA_PU(4, 16);    LUMA_PU(32, 16);    LUMA_PU(16, 32);    LUMA_PU(32, 24);    LUMA_PU(24, 32);    LUMA_PU(32,  8);    LUMA_PU(8, 32);    LUMA_PU(64, 32);    LUMA_PU(32, 64);    LUMA_PU(64, 48);    LUMA_PU(48, 64);    LUMA_PU(64, 16);    LUMA_PU(16, 64);    p.pu[LUMA_4x4].satd   = satd_4x4;    p.pu[LUMA_8x8].satd   = satd8<8, 8>;    p.pu[LUMA_8x4].satd   = satd_8x4;    p.pu[LUMA_4x8].satd   = satd4<4, 8>;    p.pu[LUMA_16x16].satd = satd8<16, 16>;    p.pu[LUMA_16x8].satd  = satd8<16, 8>;    p.pu[LUMA_8x16].satd  = satd8<8, 16>;    p.pu[LUMA_16x12].satd = satd8<16, 12>;    p.pu[LUMA_12x16].satd = satd4<12, 16>;    p.pu[LUMA_16x4].satd  = satd8<16, 4>;    p.pu[LUMA_4x16].satd  = satd4<4, 16>;    p.pu[LUMA_32x32].satd = satd8<32, 32>;    p.pu[LUMA_32x16].satd = satd8<32, 16>;    p.pu[LUMA_16x32].satd = satd8<16, 32>;    p.pu[LUMA_32x24].satd = satd8<32, 24>;    p.pu[LUMA_24x32].satd = satd8<24, 32>;    p.pu[LUMA_32x8].satd  = satd8<32, 8>;    p.pu[LUMA_8x32].satd  = satd8<8, 32>;    p.pu[LUMA_64x64].satd = satd8<64, 64>;    p.pu[LUMA_64x32].satd = satd8<64, 32>;    p.pu[LUMA_32x64].satd = satd8<32, 64>;    p.pu[LUMA_64x48].satd = satd8<64, 48>;    p.pu[LUMA_48x64].satd = satd8<48, 64>;    p.pu[LUMA_64x16].satd = satd8<64, 16>;    p.pu[LUMA_16x64].satd = satd8<16, 64>;    LUMA_CU(4, 4);    LUMA_CU(8, 8);    LUMA_CU(16, 16);    LUMA_CU(32, 32);    LUMA_CU(64, 64);    p.cu[BLOCK_4x4].sa8d   = satd_4x4;    p.cu[BLOCK_8x8].sa8d   = sa8d_8x8;    p.cu[BLOCK_16x16].sa8d = sa8d_16x16;    p.cu[BLOCK_32x32].sa8d = sa8d16<32, 32>;    p.cu[BLOCK_64x64].sa8d = sa8d16<64, 64>;#define CHROMA_PU_420(W, H) \    p.chroma[X265_CSP_I420].pu[CHROMA_420_ ## W ## x ## H].addAvg  = addAvg<W, H>;         \    p.chroma[X265_CSP_I420].pu[CHROMA_420_ ## W ## x ## H].copy_pp = blockcopy_pp_c<W, H>; \    CHROMA_PU_420(2, 2);    CHROMA_PU_420(2, 4);    CHROMA_PU_420(4, 4);    CHROMA_PU_420(8, 8);    CHROMA_PU_420(16, 16);    CHROMA_PU_420(32, 32);    CHROMA_PU_420(4, 2);    CHROMA_PU_420(8, 4);    CHROMA_PU_420(4, 8);    CHROMA_PU_420(8, 6);    CHROMA_PU_420(6, 8);    CHROMA_PU_420(8, 2);    CHROMA_PU_420(2, 8);    CHROMA_PU_420(16, 8);    CHROMA_PU_420(8,  16);    CHROMA_PU_420(16, 12);    CHROMA_PU_420(12, 16);    CHROMA_PU_420(16, 4);    CHROMA_PU_420(4,  16);    CHROMA_PU_420(32, 16);    CHROMA_PU_420(16, 32);    CHROMA_PU_420(32, 24);    CHROMA_PU_420(24, 32);    CHROMA_PU_420(32, 8);    CHROMA_PU_420(8,  32);    p.chroma[X265_CSP_I420].pu[CHROMA_420_2x2].satd   = NULL;    p.chroma[X265_CSP_I420].pu[CHROMA_420_4x4].satd   = satd_4x4;    p.chroma[X265_CSP_I420].pu[CHROMA_420_8x8].satd   = satd8<8, 8>;    p.chroma[X265_CSP_I420].pu[CHROMA_420_16x16].satd = satd8<16, 16>;    p.chroma[X265_CSP_I420].pu[CHROMA_420_32x32].satd = satd8<32, 32>;    p.chroma[X265_CSP_I420].pu[CHROMA_420_4x2].satd   = NULL;    p.chroma[X265_CSP_I420].pu[CHROMA_420_2x4].satd   = NULL;    p.chroma[X265_CSP_I420].pu[CHROMA_420_8x4].satd   = satd_8x4;    p.chroma[X265_CSP_I420].pu[CHROMA_420_4x8].satd   = satd4<4, 8>;    p.chroma[X265_CSP_I420].pu[CHROMA_420_16x8].satd  = satd8<16, 8>;    p.chroma[X265_CSP_I420].pu[CHROMA_420_8x16].satd  = satd8<8, 16>;    p.chroma[X265_CSP_I420].pu[CHROMA_420_32x16].satd = satd8<32, 16>;    p.chroma[X265_CSP_I420].pu[CHROMA_420_16x32].satd = satd8<16, 32>;    p.chroma[X265_CSP_I420].pu[CHROMA_420_8x6].satd   = NULL;    p.chroma[X265_CSP_I420].pu[CHROMA_420_6x8].satd   = NULL;    p.chroma[X265_CSP_I420].pu[CHROMA_420_8x2].satd   = NULL;    p.chroma[X265_CSP_I420].pu[CHROMA_420_2x8].satd   = NULL;    p.chroma[X265_CSP_I420].pu[CHROMA_420_16x12].satd = satd4<16, 12>;    p.chroma[X265_CSP_I420].pu[CHROMA_420_12x16].satd = satd4<12, 16>;    p.chroma[X265_CSP_I420].pu[CHROMA_420_16x4].satd  = satd4<16, 4>;    p.chroma[X265_CSP_I420].pu[CHROMA_420_4x16].satd  = satd4<4, 16>;    p.chroma[X265_CSP_I420].pu[CHROMA_420_32x24].satd = satd8<32, 24>;    p.chroma[X265_CSP_I420].pu[CHROMA_420_24x32].satd = satd8<24, 32>;    p.chroma[X265_CSP_I420].pu[CHROMA_420_32x8].satd  = satd8<32, 8>;    p.chroma[X265_CSP_I420].pu[CHROMA_420_8x32].satd  = satd8<8, 32>;#define CHROMA_CU_420(W, H) \    p.chroma[X265_CSP_I420].cu[BLOCK_420_ ## W ## x ## H].sse_pp  = sse<W, H, pixel, pixel>; \    p.chroma[X265_CSP_I420].cu[BLOCK_420_ ## W ## x ## H].copy_sp = blockcopy_sp_c<W, H>; \    p.chroma[X265_CSP_I420].cu[BLOCK_420_ ## W ## x ## H].copy_ps = blockcopy_ps_c<W, H>; \    p.chroma[X265_CSP_I420].cu[BLOCK_420_ ## W ## x ## H].copy_ss = blockcopy_ss_c<W, H>; \    p.chroma[X265_CSP_I420].cu[BLOCK_420_ ## W ## x ## H].sub_ps = pixel_sub_ps_c<W, H>;  \    p.chroma[X265_CSP_I420].cu[BLOCK_420_ ## W ## x ## H].add_ps = pixel_add_ps_c<W, H>;    CHROMA_CU_420(2, 2)    CHROMA_CU_420(4, 4)    CHROMA_CU_420(8, 8)    CHROMA_CU_420(16, 16)    CHROMA_CU_420(32, 32)    p.chroma[X265_CSP_I420].cu[BLOCK_8x8].sa8d   = p.chroma[X265_CSP_I420].pu[CHROMA_420_4x4].satd;    p.chroma[X265_CSP_I420].cu[BLOCK_16x16].sa8d = sa8d8<8, 8>;    p.chroma[X265_CSP_I420].cu[BLOCK_32x32].sa8d = sa8d16<16, 16>;    p.chroma[X265_CSP_I420].cu[BLOCK_64x64].sa8d = sa8d16<32, 32>;#define CHROMA_PU_422(W, H) \    p.chroma[X265_CSP_I422].pu[CHROMA_422_ ## W ## x ## H].addAvg  = addAvg<W, H>;         \    p.chroma[X265_CSP_I422].pu[CHROMA_422_ ## W ## x ## H].copy_pp = blockcopy_pp_c<W, H>; \    CHROMA_PU_422(2, 4);    CHROMA_PU_422(4, 8);    CHROMA_PU_422(8, 16);    CHROMA_PU_422(16, 32);    CHROMA_PU_422(32, 64);    CHROMA_PU_422(4, 4);    CHROMA_PU_422(2, 8);    CHROMA_PU_422(8, 8);    CHROMA_PU_422(4, 16);    CHROMA_PU_422(8, 12);    CHROMA_PU_422(6, 16);    CHROMA_PU_422(8, 4);    CHROMA_PU_422(2, 16);    CHROMA_PU_422(16, 16);    CHROMA_PU_422(8, 32);    CHROMA_PU_422(16, 24);    CHROMA_PU_422(12, 32);    CHROMA_PU_422(16, 8);    CHROMA_PU_422(4,  32);    CHROMA_PU_422(32, 32);    CHROMA_PU_422(16, 64);    CHROMA_PU_422(32, 48);    CHROMA_PU_422(24, 64);    CHROMA_PU_422(32, 16);    CHROMA_PU_422(8,  64);    p.chroma[X265_CSP_I422].pu[CHROMA_422_2x4].satd   = NULL;    p.chroma[X265_CSP_I422].pu[CHROMA_422_4x8].satd   = satd4<4, 8>;    p.chroma[X265_CSP_I422].pu[CHROMA_422_8x16].satd  = satd8<8, 16>;    p.chroma[X265_CSP_I422].pu[CHROMA_422_16x32].satd = satd8<16, 32>;    p.chroma[X265_CSP_I422].pu[CHROMA_422_32x64].satd = satd8<32, 64>;    p.chroma[X265_CSP_I422].pu[CHROMA_422_4x4].satd   = satd_4x4;    p.chroma[X265_CSP_I422].pu[CHROMA_422_2x8].satd   = NULL;    p.chroma[X265_CSP_I422].pu[CHROMA_422_8x8].satd   = satd8<8, 8>;    p.chroma[X265_CSP_I422].pu[CHROMA_422_4x16].satd  = satd4<4, 16>;    p.chroma[X265_CSP_I422].pu[CHROMA_422_16x16].satd = satd8<16, 16>;    p.chroma[X265_CSP_I422].pu[CHROMA_422_8x32].satd  = satd8<8, 32>;    p.chroma[X265_CSP_I422].pu[CHROMA_422_32x32].satd = satd8<32, 32>;    p.chroma[X265_CSP_I422].pu[CHROMA_422_16x64].satd = satd8<16, 64>;    p.chroma[X265_CSP_I422].pu[CHROMA_422_8x12].satd  = satd4<8, 12>;    p.chroma[X265_CSP_I422].pu[CHROMA_422_6x16].satd  = NULL;    p.chroma[X265_CSP_I422].pu[CHROMA_422_8x4].satd   = satd4<8, 4>;    p.chroma[X265_CSP_I422].pu[CHROMA_422_2x16].satd  = NULL;    p.chroma[X265_CSP_I422].pu[CHROMA_422_16x24].satd = satd8<16, 24>;    p.chroma[X265_CSP_I422].pu[CHROMA_422_12x32].satd = satd4<12, 32>;    p.chroma[X265_CSP_I422].pu[CHROMA_422_16x8].satd  = satd8<16, 8>;    p.chroma[X265_CSP_I422].pu[CHROMA_422_4x32].satd  = satd4<4, 32>;    p.chroma[X265_CSP_I422].pu[CHROMA_422_32x48].satd = satd8<32, 48>;    p.chroma[X265_CSP_I422].pu[CHROMA_422_24x64].satd = satd8<24, 64>;    p.chroma[X265_CSP_I422].pu[CHROMA_422_32x16].satd = satd8<32, 16>;    p.chroma[X265_CSP_I422].pu[CHROMA_422_8x64].satd  = satd8<8, 64>;#define CHROMA_CU_422(W, H) \    p.chroma[X265_CSP_I422].cu[BLOCK_422_ ## W ## x ## H].sse_pp  = sse<W, H, pixel, pixel>; \    p.chroma[X265_CSP_I422].cu[BLOCK_422_ ## W ## x ## H].copy_sp = blockcopy_sp_c<W, H>; \    p.chroma[X265_CSP_I422].cu[BLOCK_422_ ## W ## x ## H].copy_ps = blockcopy_ps_c<W, H>; \    p.chroma[X265_CSP_I422].cu[BLOCK_422_ ## W ## x ## H].copy_ss = blockcopy_ss_c<W, H>; \    p.chroma[X265_CSP_I422].cu[BLOCK_422_ ## W ## x ## H].sub_ps = pixel_sub_ps_c<W, H>; \    p.chroma[X265_CSP_I422].cu[BLOCK_422_ ## W ## x ## H].add_ps = pixel_add_ps_c<W, H>;    CHROMA_CU_422(2, 4)    CHROMA_CU_422(4, 8)    CHROMA_CU_422(8, 16)    CHROMA_CU_422(16, 32)    CHROMA_CU_422(32, 64)    p.chroma[X265_CSP_I422].cu[BLOCK_8x8].sa8d   = p.chroma[X265_CSP_I422].pu[CHROMA_422_4x8].satd;    p.chroma[X265_CSP_I422].cu[BLOCK_16x16].sa8d = sa8d8<8, 16>;    p.chroma[X265_CSP_I422].cu[BLOCK_32x32].sa8d = sa8d16<16, 32>;    p.chroma[X265_CSP_I422].cu[BLOCK_64x64].sa8d = sa8d16<32, 64>;    p.weight_pp = weight_pp_c;    p.weight_sp = weight_sp_c;    p.scale1D_128to64 = scale1D_128to64;    p.scale2D_64to32 = scale2D_64to32;    p.frameInitLowres = frame_init_lowres_core;    p.ssim_4x4x2_core = ssim_4x4x2_core;    p.ssim_end_4 = ssim_end_4;    p.planecopy_cp = planecopy_cp_c;    p.planecopy_sp = planecopy_sp_c;    p.propagateCost = estimateCUPropagateCost;}}


1 0
原创粉丝点击