STM32启动文件详解

来源:互联网 发布:软件开发工作流 编辑:程序博客网 时间:2024/06/05 07:37

http://www.techbulo.com/540.html

图贴不上来,自行看代码

在嵌入式应用程序开发过程里,由于使用C语言编程,基本很少涉及到机器底层寄存器的执行过程,一般都会直接在main函数里开始写代码,似乎main成为了理所当然的起点,尽管从C程序的角度来看程序都是直接从main函数开始执行。然而,MCU上电后,是如何寻找到并执行main函数这一问题却很自然的被忽略了!事实上微控制器是无法从硬件上去定位main函数的入口地址,因为使用C语言作为开发语言后,变量/函数的地址便由编译器在编译时自行分配,因此main函数的入口地址在编译后便不一定是一个绝对地址。MCU上电后又是如何寻找到这个入口地址呢?以前接触无论是PIC、AVR、MSP430或是51过程中都没涉及到启动文件的配置,仅仅只有熔丝位或配置字是需要根据实际使用配置来设置,其实并非没有,而是由于大部分的开发环境往往自动完整地提供了这个启动文件,不需要开发人员再行干预启动过程,只需要从main函数开始进行应用程序的设计即可。然而,但接触到嵌入内核比如Linux系统移植过程“bootloader”却是很重要也是必不可少的一个环节。事实上,每一种微控制器,无论性能高下,结构简繁,价格贵贱都是必须有启动文件才能正常工作的,它的作用同“bootloader”类似。启动文件完成了微控制器从“复位”到“开始执行main函数”中间这段时间的必要启动配置。

     在STM32中,如果是在MDK下创建一个工程,一般都有提示是否加入Star up Code文件,这个就是启动文件,这里有个误区,一般对于初学者来看,很容易误以为STM32F10x.s这个启动文件是STM32所有类型芯片的通用启动文件,因此也自然不会去理会它的作用,事实上,这个启动文件只是针对部分STM32系列,如果仔细看过它的启动代码就会发现里面很多中断函数定义是没有的,甚至有些和STM32F10x_it.c里的函数是有出路的,如果刚好用到了默认的这个中断服务子函数的话,程序一旦运行到了中断是找不到入口地址的,这样就会莫名其妙地不知问题所在。STM32F10x.s是MDK提供的启动代码,从其里面的内容看来,它只定义了3个串口,4个定时器。实际上STM32的系列产品有5个串口的型号,也只有有2个串口的型号,定时器也是,做多的有8个定时器。比如,如果你用的STM32F103ZET6,而启动文件用的是STM32F10x.s的话,你可以正常使用串口1~3的中断,而串口4和5的中断,则无法正常使用。所以STM32F10x.s并不能适用所有的STM32型号,对于不同型号的STM32,正确做法是选择不同的启动文件。ST公司提供了3个启动文件:

startup_stm32f10x_ld.s

startup_stm32f10x_md.s

startup_stm32f10x_hd.s

分别适用于小容量/中容量/大容量的STM32芯片,具体判断方法如下:

             小容量:FLASH≤32K
                    中容量:64K≤FLASH≤128K
                    大容量:256K≤FLASH
在启动代码中,补充几点:

启动代码中的两条语句解释:

一、PROC 为子程序开始,ENDP 为子程序结束

二、[weak] 的意思是该函数优先级比较弱,如果其它地方定义了一个同名函数,那么此处的这个函数就被取代了。语法格式为 EXPORT 标号 {[WEAK]} 。EXPORT 可用GLOBAL代替。

对于_main函数的理解:

事实上,_main 和main是两个完全不同的函数!_main代码是编译器自动创建的,因此无法找到_main代码。MDK文档中有一句说明:it is automatically craated by the linker when it sees a definition of main() .大体意思可以理解为:当编译器发现定义了main函数,那么就会自动创建_main.

_main 和main的关系

_main 主要做两件事:其一,C所需的资源;其二,调用main函数。这就不难理解为什么在启动代码调用的是_main ,最后却能转到main函数中去执行的原因了。

 

AREA指令的理解

AREA指令是一个伪指令,用于段定义。ARM汇编程序由段组成,段是相对独立的指令或数据单位,每个段由AREA伪指令定义,并定义段的属性。

AREA参数说明:

 STACK——AREA指令的一个参数,定义段名称

 NOINIT——AREA指令的一个参数,指定本数据段仅仅保留了内在单元,而将句初始值写入内存单元,此时内存单元值初始化为0

 READWRITE——指定本段为可读可写,数据段默认为READWRITE.

READWRITE(读写)、READONLY(只读)

 ALIGN——也是一个伪指令,指定对齐方式。ALIGN n 指令的对齐值有两种选择:n或者2^n

例子:开辟一个堆栈段,段名为STACK,定义为可读可写,将内存单元初始化为0,对齐方式为8字节对齐。

AREA STACK,NOINIT,READWRITE,ALIGN=3


相对于ARM上一代的主流ARM7/ARM9内核架构,新一代Cortex内核架构的启动方式有了比较大的变化。ARM7/ARM9内核的控制器在复位后,CPU会从存储空间的绝对地址0x000000取出第一条指令执行复位中断服务程序的方式启动,即固定了复位后的起始地址为0x000000(PC = 0x000000)同时中断向量表的位置并不是固定的。而Cortex-M3内核则正好相反,有3种情况:

1、 通过boot引脚设置可以将中断向量表定位于SRAM区,即起始地址为0x2000000,同时复位后PC指针位于0x2000000处;

2、 通过boot引脚设置可以将中断向量表定位于FLASH区,即起始地址为0x8000000,同时复位后PC指针位于0x8000000处;

3、 通过boot引脚设置可以将中断向量表定位于内置Bootloader区,本文不对这种情况做论述;

而Cortex-M3内核规定,起始地址必须存放堆顶指针,而第二个地址则必须存放复位中断入口向量地址,这样在Cortex-M3内核复位后,会自动从起始地址的下一个32位空间取出复位中断入口向量,跳转执行复位中断服务程序。对比ARM7/ARM9内核,Cortex-M3内核则是固定了中断向量表的位置而起始地址是可变化的。
有了上述准备只是后,下面以STM32的2.02固件库提供的启动文件“stm32f10x_vector.s”为模板,对STM32的启动过程做一个简要而全面的解析。

程序清单一:
文件“stm32f10x_vector.s”,其中注释为行号

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
DATA_IN_ExtSRAM EQU 0 ;1
Stack_Size EQU 0x00000400 ;2
AREA STACK, NOINIT, READWRITE, ALIGN = 3 ;3
Stack_Mem SPACE Stack_Size ;4
__initial_sp ;5
Heap_Size EQU 0x00000400 ;6
AREA HEAP, NOINIT, READWRITE, ALIGN = 3 ;7
__heap_base ;8
Heap_Mem SPACE Heap_Size ;9
__heap_limit ;10
THUMB ;11
PRESERVE8 ;12
IMPORT NMIException ;13
IMPORT HardFaultException ;14
IMPORT MemManageException ;15
IMPORT BusFaultException ;16
IMPORT UsageFaultException ;17
IMPORT SVCHandler ;18
IMPORT DebugMonitor ;19
IMPORT PendSVC ;20
IMPORT SysTickHandler ;21
IMPORT WWDG_IRQHandler ;22
IMPORT PVD_IRQHandler ;23
IMPORT TAMPER_IRQHandler ;24
IMPORT RTC_IRQHandler ;25
IMPORT FLASH_IRQHandler ;26
IMPORT RCC_IRQHandler ;27
IMPORT EXTI0_IRQHandler ;28
IMPORT EXTI1_IRQHandler ;29
IMPORT EXTI2_IRQHandler ;30
IMPORT EXTI3_IRQHandler ;31
IMPORT EXTI4_IRQHandler ;32
IMPORT DMA1_Channel1_IRQHandler ;33
IMPORT DMA1_Channel2_IRQHandler ;34
IMPORT DMA1_Channel3_IRQHandler ;35
IMPORT DMA1_Channel4_IRQHandler ;36
IMPORT DMA1_Channel5_IRQHandler ;37
IMPORT DMA1_Channel6_IRQHandler ;38
IMPORT DMA1_Channel7_IRQHandler ;39
IMPORT ADC1_2_IRQHandler ;40
IMPORT USB_HP_CAN_TX_IRQHandler ;41
IMPORT USB_LP_CAN_RX0_IRQHandler ;42
IMPORT CAN_RX1_IRQHandler ;43
IMPORT CAN_SCE_IRQHandler ;44
IMPORT EXTI9_5_IRQHandler ;45
IMPORT TIM1_BRK_IRQHandler ;46
IMPORT TIM1_UP_IRQHandler ;47
IMPORT TIM1_TRG_COM_IRQHandler ;48
IMPORT TIM1_CC_IRQHandler ;49
IMPORT TIM2_IRQHandler ;50
IMPORT TIM3_IRQHandler ;51
IMPORT TIM4_IRQHandler ;52
IMPORT I2C1_EV_IRQHandler ;53
IMPORT I2C1_ER_IRQHandler ;54
IMPORT I2C2_EV_IRQHandler ;55
IMPORT I2C2_ER_IRQHandler ;56
IMPORT SPI1_IRQHandler ;57
IMPORT SPI2_IRQHandler ;58
IMPORT USART1_IRQHandler ;59
IMPORT USART2_IRQHandler ;60
IMPORT USART3_IRQHandler ;61
IMPORT EXTI15_10_IRQHandler ;62
IMPORT RTCAlarm_IRQHandler ;63
IMPORT USBWakeUp_IRQHandler ;64
IMPORT TIM8_BRK_IRQHandler ;65
IMPORT TIM8_UP_IRQHandler ;66
IMPORT TIM8_TRG_COM_IRQHandler ;67
IMPORT TIM8_CC_IRQHandler ;68
IMPORT ADC3_IRQHandler ;69
IMPORT FSMC_IRQHandler ;70
IMPORT SDIO_IRQHandler ;71
IMPORT TIM5_IRQHandler ;72
IMPORT SPI3_IRQHandler ;73
IMPORT UART4_IRQHandler ;74
IMPORT UART5_IRQHandler ;75
IMPORT TIM6_IRQHandler ;76
IMPORT TIM7_IRQHandler ;77
IMPORT DMA2_Channel1_IRQHandler ;78
IMPORT DMA2_Channel2_IRQHandler ;79
IMPORT DMA2_Channel3_IRQHandler ;80
IMPORT DMA2_Channel4_5_IRQHandler ;81
AREA RESET, DATA, READONLY ;82
EXPORT __Vectors ;83
__Vectors ;84
DCD __initial_sp ;85
DCD Reset_Handler ;86
DCD NMIException ;87
DCD HardFaultException ;88
DCD MemManageException ;89
DCD BusFaultException ;90
DCD UsageFaultException ;91
DCD 0 ;92
DCD 0 ;93
DCD 0 ;94
DCD 0 ;95
DCD SVCHandler ;96
DCD DebugMonitor ;97
DCD 0 ;98
DCD PendSVC ;99
DCD SysTickHandler ;100
DCD WWDG_IRQHandler ;101
DCD PVD_IRQHandler ;102
DCD TAMPER_IRQHandler ;103
DCD RTC_IRQHandler ;104
DCD FLASH_IRQHandler ;105
DCD RCC_IRQHandler ;106
DCD EXTI0_IRQHandler ;107
DCD EXTI1_IRQHandler ;108
DCD EXTI2_IRQHandler ;109
DCD EXTI3_IRQHandler ;110
DCD EXTI4_IRQHandler ;111
DCD DMA1_Channel1_IRQHandler ;112
DCD DMA1_Channel2_IRQHandler ;113
DCD DMA1_Channel3_IRQHandler ;114
DCD DMA1_Channel4_IRQHandler ;115
DCD DMA1_Channel5_IRQHandler ;116
DCD DMA1_Channel6_IRQHandler ;117
DCD DMA1_Channel7_IRQHandler ;118
DCD ADC1_2_IRQHandler ;119
DCD USB_HP_CAN_TX_IRQHandler ;120
DCD USB_LP_CAN_RX0_IRQHandler ;121
DCD CAN_RX1_IRQHandler ;122
DCD CAN_SCE_IRQHandler ;123
DCD EXTI9_5_IRQHandler ;124
DCD TIM1_BRK_IRQHandler ;125
DCD TIM1_UP_IRQHandler ;126
DCD TIM1_TRG_COM_IRQHandler ;127
DCD TIM1_CC_IRQHandler ;128
DCD TIM2_IRQHandler ;129
DCD TIM3_IRQHandler ;130
DCD TIM4_IRQHandler ;131
DCD I2C1_EV_IRQHandler ;132
DCD I2C1_ER_IRQHandler ;133
DCD I2C2_EV_IRQHandler ;134
DCD I2C2_ER_IRQHandler ;135
DCD SPI1_IRQHandler ;136
DCD SPI2_IRQHandler ;137
DCD USART1_IRQHandler ;138
DCD USART2_IRQHandler ;139
DCD USART3_IRQHandler ;140
DCD EXTI15_10_IRQHandler ;141
DCD RTCAlarm_IRQHandler ;142
DCD USBWakeUp_IRQHandler ;143
DCD TIM8_BRK_IRQHandler ;144
DCD TIM8_UP_IRQHandler ;145
DCD TIM8_TRG_COM_IRQHandler ;146
DCD TIM8_CC_IRQHandler ;147
DCD ADC3_IRQHandler ;148
DCD FSMC_IRQHandler ;149
DCD SDIO_IRQHandler ;150
DCD TIM5_IRQHandler ;151
DCD SPI3_IRQHandler ;152
DCD UART4_IRQHandler ;153
DCD UART5_IRQHandler ;154
DCD TIM6_IRQHandler ;155
DCD TIM7_IRQHandler ;156
DCD DMA2_Channel1_IRQHandler ;157
DCD DMA2_Channel2_IRQHandler ;158
DCD DMA2_Channel3_IRQHandler ;159
DCD DMA2_Channel4_5_IRQHandler ;160
AREA |.text|, CODE, READONLY ;161
Reset_Handler PROC ;162
EXPORT Reset_Handler ;163
IF DATA_IN_ExtSRAM == 1 ;164
LDR R0,= 0x00000114 ;165
LDR R1,= 0x40021014 ;166
STR R0,[R1] ;167
LDR R0,= 0x000001E0 ;168
LDR R1,= 0x40021018 ;169
STR R0,[R1] ;170
LDR R0,= 0x44BB44BB ;171
LDR R1,= 0x40011400 ;172
STR R0,[R1] ;173
LDR R0,= 0xBBBBBBBB ;174
LDR R1,= 0x40011404 ;175
STR R0,[R1] ;176
LDR R0,= 0xB44444BB ;177
LDR R1,= 0x40011800 ;178
STR R0,[R1] ;179
LDR R0,= 0xBBBBBBBB ;180
LDR R1,= 0x40011804 ;181
STR R0,[R1] ;182
LDR R0,= 0x44BBBBBB ;183
LDR R1,= 0x40011C00 ;184
STR R0,[R1] ;185
LDR R0,= 0xBBBB4444 ;186
LDR R1,= 0x40011C04 ;187
STR R0,[R1] ;188
LDR R0,= 0x44BBBBBB ;189
LDR R1,= 0x40012000 ;190
STR R0,[R1] ;191
LDR R0,= 0x44444B44 ;192
LDR R1,= 0x40012004 ;193
STR R0,[R1] ;194
LDR R0,= 0x00001011 ;195
LDR R1,= 0xA0000010 ;196
STR R0,[R1] ;197
LDR R0,= 0x00000200 ;198
LDR R1,= 0xA0000014 ;199
STR R0,[R1] ;200
ENDIF ;201
IMPORT __main ;202
LDR R0, =__main ;203
BX R0 ;204
ENDP ;205
ALIGN ;206
IF : DEF:__MICROLIB ;207
EXPORT __initial_sp ;208
EXPORT __heap_base ;209
EXPORT __heap_limit ;210
ELSE ;211
IMPORT __use_two_region_memory ;212
EXPORT __user_initial_stackheap ;213
__user_initial_stackheap ;214
LDR R0, = Heap_Mem ;215
LDR R1, = (Stack_Mem + Stack_Size) ;216
LDR R2, = (Heap_Mem + Heap_Size) ;217
LDR R3, = Stack_Mem ;218
BX LR ;219
ALIGN ;220
ENDIF ;221
END ;222
ENDIF ;223
END ;224

如程序清单一,STM32的启动代码一共224行,使用了汇编语言编写,这其中的主要原因下文将会给出交代。现在从第一行开始分析:
第1行:定义是否使用外部SRAM,为1则使用,为0则表示不使用。此语行若用C语言表达则等价于:
#define DATA_IN_ExtSRAM 0
第2行:定义栈空间大小为0x00000400个字节,即1Kbyte。此语行亦等价于:
#define Stack_Size 0x00000400
第3行:伪指令AREA,表示
第4行:开辟一段大小为Stack_Size的内存空间作为栈。
第5行:标号__initial_sp,表示栈空间顶地址。
第6行:定义堆空间大小为0x00000400个字节,也为1Kbyte。
第7行:伪指令AREA,表示
第8行:标号__heap_base,表示堆空间起始地址。
第9行:开辟一段大小为Heap_Size的内存空间作为堆。
第10行:标号__heap_limit,表示堆空间结束地址。
第11行:告诉编译器使用THUMB指令集。
第12行:告诉编译器以8字节对齐。
第13—81行:IMPORT指令,指示后续符号是在外部文件定义的(类似C语言中的全局变量声明),而下文可能会使用到这些符号。
第82行:定义只读数据段,实际上是在CODE区(假设STM32从FLASH启动,则此中断向量表起始地址即为0x8000000)
第83行:将标号__Vectors声明为全局标号,这样外部文件就可以使用这个标号。
第84行:标号__Vectors,表示中断向量表入口地址。
第85—160行:建立中断向量表。
第161行:
第162行:复位中断服务程序,PROC…ENDP结构表示程序的开始和结束。
第163行:声明复位中断向量Reset_Handler为全局属性,这样外部文件就可以调用此复位中断服务。
第164行:IF…ENDIF为预编译结构,判断是否使用外部SRAM,在第1行中已定义为“不使用”。
第165—201行:此部分代码的作用是设置FSMC总线以支持SRAM,因不使用外部SRAM因此此部分代码不会被编译。
第202行:声明__main标号。
第203—204行:跳转__main地址执行。
第207行:IF…ELSE…ENDIF结构,判断是否使用DEF:__MICROLIB(此处为不使用)。
第208—210行:若使用DEF:__MICROLIB,则将__initial_sp,__heap_base,__heap_limit亦即栈顶地址,堆始末地址赋予全局属性,使外部程序可以使用。
第212行:定义全局标号__use_two_region_memory。
第213行:声明全局标号__user_initial_stackheap,这样外程序也可调用此标号。
第214行:标号__user_initial_stackheap,表示用户堆栈初始化程序入口。
第215—218行:分别保存栈顶指针和栈大小,堆始地址和堆大小至R0,R1,R2,R3寄存器。
第224行:程序完毕。

以上便是STM32的启动代码的完整解析,接下来对几个小地方做解释:

1、 AREA指令:伪指令,用于定义代码段或数据段,后跟属性标号。其中比较重要的一个标号为“READONLY”或者“READWRITE”,其中“READONLY”表示该段为只读属性,联系到STM32的内部存储介质,可知具有只读属性的段保存于FLASH区,即0x8000000地址后。而“READWRITE”表示该段为“可读写”属性,可知“可读写”段保存于SRAM区,即0x2000000地址后。由此可以从第3、7行代码知道,堆栈段位于SRAM空间。从第82行可知,中断向量表放置与FLASH区,而这也是整片启动代码中最先被放进FLASH区的数据。因此可以得到一条重要的信息:0x8000000地址存放的是栈顶地址__initial_sp,0x8000004地址存放的是复位中断向量Reset_Handler(STM32使用32位总线,因此存储空间为4字节对齐)。

2、 DCD指令:作用是开辟一段空间,其意义等价于C语言中的地址符“&”。因此从第84行开始建立的中断向量表则类似于使用C语言定义了一个指针数组,其每一个成员都是一个函数指针,分别指向各个中断服务函数。

3、 标号:前文多处使用了“标号”一词。标号主要用于表示一片内存空间的某个位置,等价于C语言中的“地址”概念。地址仅仅表示存储空间的一个位置,从C语言的角度来看,变量的地址,数组的地址或是函数的入口地址在本质上并无区别。

4、 第202行中的__main标号并不表示C程序中的main函数入口地址,因此第204行也并不是跳转至main函数开始执行C程序。__main标号表示C/C++标准实时库函数里的一个初始化子程序__main的入口地址。该程序的一个主要作用是初始化堆栈(对于程序清单一来说则是跳转__user_initial_stackheap标号进行初始化堆栈的),并初始化映像文件,最后跳转C程序中的main函数。这就解释了为何所有的C程序必须有一个main函数作为程序的起点——因为这是由C/C++标准实时库所规定的——并且不能更改,因为C/C++标准实时库并不对外界开放源代码。因此,实际上在用户可见的前提下,程序在第204行后就跳转至.c文件中的main函数,开始执行C程序了。

至此可以总结一下STM32的启动文件和启动过程。首先对栈和堆的大小进行定义,并在代码区的起始处建立中断向量表,其第一个表项是栈顶地址,第二个表项是复位中断服务入口地址。然后在复位中断服务程序中跳转;C/C++标准实时库的__main函数,完成用户堆栈等的初始化后,跳转.c文件中的main函数开始执行C程序。假设STM32被设置为从内部FLASH启动(这也是最常见的一种情况),中断向量表起始地位为0x8000000,则栈顶地址存放于0x8000000处,而复位中断服务入口地址存放于0x8000004处。当STM32遇到复位信号后,则从0x80000004处取出复位中断服务入口地址,继而执行复位中断服务程序,然后跳转__main函数,最后进入mian函数,来到C的世界。


0 0
原创粉丝点击