内核分析-第六周

来源:互联网 发布:seo外包优化 编辑:程序博客网 时间:2024/04/29 01:35

刘文学+原创作品转载请注明出处 http://blog.csdn.net/wdxz6547/article/details/51051866 + 《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000

本文目的, 跟踪 fork 从用户态到内核态之后返回用户态的整个流程. 最后通过
调试验证该流程.

进程描述块

谈论Linux 进程, 不能绕过 task_struct 数据结构. 该结构定义在
linux/include/linux/sched.h

由于数量代码量非常庞大, 事实上对此, 只需要大概了解即可. 下面只列出我自己感觉有用的成员

  • volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
  • void *stack;
  • atomic_t usage;
  • unsigned int flags; /* per process flags, defined below */
  • struct sched_info sched_info
  • struct list_head tasks;
  • struct mm_struct *mm, *active_mm;
  • int exit_state;
  • int exit_code, exit_signal;
  • unsigned long atomic_flags; /* Flags needing atomic access. */
  • struct restart_block restart_block;
  • struct task_struct __rcu real_parent; / real parent process */
  • struct task_struct __rcu *parent;
  • struct list_head children; /* list of my children */
  • struct list_head sibling; /* linkage in my parent’s children list */
  • struct task_struct group_leader; / threadgroup leader */

  • struct sched_class *sched_class;

  • struct sched_entity se;
  • struct pid_link pids[PIDTYPE_MAX];
  • struct list_head thread_group;
  • struct list_head thread_node;
  • pid_t pid;
  • pid_t tgid;
  • struct sysv_sem sysvsem; //IPC
  • struct sysv_shm sysvshm;
  • struct nameidata *nameidata;
  • struct fs_struct *fs;
  • struct files_struct *files;
  • void *journal_info;
  • struct list_head tasks;
  • struct mm_struct *mm, *active_mm;
  • struct thread_struct thread;

还有一些 pstrace, numa, smp, perf_event, cgroup, 中断跟踪, 信号处理等并不是目前关注的问题.

进程创建

从系统调用部分, 我们已经对系统调用有了基本的了解. 因此, 这里通过对 fork
这个系统调用的学习, 一方面加深对系统调用的理解, 一方面理解进程创建的原理.

首先当用户通过 fork 这个系统调用创建一个新的进程的时候, 首先触发中断 0x80,
系统由用户态跳转到内核态. 内核态首先保存现场, 根据用户态传递的系统调用号,
在这里
查找 sys_call_table 找到 fork 对应的系统处理函数 sys_fork(实际上为
SYSCALL_DEFINE0(fork))

fork 的代码具体实现在这里

首先, 调用 _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0)

而 _do_fork 对 fork 主要有用的两个函数

p = copy_process(clone_flags, stack_start, stack_size,child_tidptr, NULL, trace, tls);

当 copy_process 执行成功:
1. pid = get_task_pid(p, PIDTYPE_PID); 获取进程 pid
2. wake_up_new_task(p);

至此, 系统调用 fork 返回. 其余部分与系统参照系统调用部分. 下面着重分析
copy_process 和 wake_up_new_task

copy_process

http://code.woboq.org/linux/linux/kernel/fork.c.html#copy_processstatic struct task_struct *copy_process(unsigned long clone_flags,                    unsigned long stack_start,                    unsigned long stack_size,                    int __user *child_tidptr,                    struct pid *pid,                    int trace,                    unsigned long tls){    int retval;    struct task_struct *p;    //调用 security_hook_heads.task_create 中每一个元素 P 的 P->hook.task_create(clone_flags)    retval = security_task_create(clone_flags);    if (retval)        goto fork_out;    retval = -ENOMEM;    //为新的进程分配内核空间, 新进程分配内核堆栈. 之后将 current 拷贝给    //新创建进程 p, 设置相关属性. 并返回 p. 至此, 新进程的空间及内容已经    //就绪.    p = dup_task_struct(current);    if (!p)        goto fork_out;    //初始化 p->pi_lock    rt_mutex_init_task(p);    retval = -EAGAIN;    current->flags &= ~PF_NPROC_EXCEEDED;    //为 p 分配内核空间, 并将 current->cred 拷贝给 p, 并更新 p->cred 相关成员    retval = copy_creds(p, clone_flags);    if (retval < 0)        goto bad_fork_free;    /*     * If multiple threads are within copy_process(), then this check     * triggers too late. This doesn't hurt, the check is only there     * to stop root fork bombs.     */    retval = -EAGAIN;    if (nr_threads >= max_threads)        goto bad_fork_cleanup_count;    //为 p->delays 分配内核空间并加锁    delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */    //下面初始化 p 相关数据成员    p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);    p->flags |= PF_FORKNOEXEC;    INIT_LIST_HEAD(&p->children);    INIT_LIST_HEAD(&p->sibling);    rcu_copy_process(p);    p->vfork_done = NULL;    spin_lock_init(&p->alloc_lock);    init_sigpending(&p->pending);    p->utime = p->stime = p->gtime = 0;    p->utimescaled = p->stimescaled = 0;    prev_cputime_init(&p->prev_cputime);#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN    seqcount_init(&p->vtime_seqcount);    p->vtime_snap = 0;    p->vtime_snap_whence = VTIME_INACTIVE;#endif#if defined(SPLIT_RSS_COUNTING)    memset(&p->rss_stat, 0, sizeof(p->rss_stat));#endif    p->default_timer_slack_ns = current->timer_slack_ns;    //p->ioac 置零    task_io_accounting_init(&p->ioac);    acct_clear_integrals(p);    posix_cpu_timers_init(p);    p->start_time = ktime_get_ns();    p->real_start_time = ktime_get_boot_ns();    p->io_context = NULL;    p->audit_context = NULL;    threadgroup_change_begin(current);    cgroup_fork(p);#ifdef CONFIG_NUMA    p->mempolicy = mpol_dup(p->mempolicy);    if (IS_ERR(p->mempolicy)) {        retval = PTR_ERR(p->mempolicy);        p->mempolicy = NULL;        goto bad_fork_cleanup_threadgroup_lock;    }#endif#ifdef CONFIG_CPUSETS    p->cpuset_mem_spread_rotor = NUMA_NO_NODE;    p->cpuset_slab_spread_rotor = NUMA_NO_NODE;    seqcount_init(&p->mems_allowed_seq);#endif#ifdef CONFIG_TRACE_IRQFLAGS    p->irq_events = 0;    p->hardirqs_enabled = 0;    p->hardirq_enable_ip = 0;    p->hardirq_enable_event = 0;    p->hardirq_disable_ip = _THIS_IP_;    p->hardirq_disable_event = 0;    p->softirqs_enabled = 1;    p->softirq_enable_ip = _THIS_IP_;    p->softirq_enable_event = 0;    p->softirq_disable_ip = 0;    p->softirq_disable_event = 0;    p->hardirq_context = 0;    p->softirq_context = 0;#endif    p->pagefault_disabled = 0;#ifdef CONFIG_LOCKDEP    p->lockdep_depth = 0; /* no locks held yet */    p->curr_chain_key = 0;    p->lockdep_recursion = 0;#endif#ifdef CONFIG_DEBUG_MUTEXES    p->blocked_on = NULL; /* not blocked yet */#endif#ifdef CONFIG_BCACHE    p->sequential_io    = 0;    p->sequential_io_avg    = 0;#endif    /* Perform scheduler related setup. Assign this task to a CPU. */    //初始化 sched, numa 相关成员, TODO    retval = sched_fork(clone_flags, p);    if (retval)        goto bad_fork_cleanup_policy;    //初始化 CONFIG_PERF_EVENTS 条件编译中的成员    retval = perf_event_init_task(p);    if (retval)        goto bad_fork_cleanup_policy;    //为成员 audit_context 分配内存并初始化, 并设置 TIF_SYSCALL_AUDIT 标志    retval = audit_alloc(p);    if (retval)        goto bad_fork_cleanup_perf;    /* copy all the process information */    //初始化 p->sysvshm    shm_init_task(p);    retval = copy_semundo(clone_flags, p);    if (retval)        goto bad_fork_cleanup_audit;    //拷贝父进程的 files    retval = copy_files(clone_flags, p);    if (retval)        goto bad_fork_cleanup_semundo;    //拷贝父进程的 fs    retval = copy_fs(clone_flags, p);    if (retval)        goto bad_fork_cleanup_files;    //拷贝父进程的 sighand    retval = copy_sighand(clone_flags, p);    if (retval)        goto bad_fork_cleanup_fs;    //拷贝父进程的 signal    retval = copy_signal(clone_flags, p);    if (retval)        goto bad_fork_cleanup_sighand;    //关键, 拷贝父进程的 mm, TODO 详细分析    retval = copy_mm(clone_flags, p);    if (retval)        goto bad_fork_cleanup_signal;    //创建自己的命名空间    retval = copy_namespaces(clone_flags, p);    if (retval)        goto bad_fork_cleanup_mm;    //拷贝父进程的 io_context    retval = copy_io(clone_flags, p);    if (retval)        goto bad_fork_cleanup_namespaces;    //拷贝父进程的 thread    retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);    if (retval)        goto bad_fork_cleanup_io;    if (pid != &init_struct_pid) {        pid = alloc_pid(p->nsproxy->pid_ns_for_children);        if (IS_ERR(pid)) {            retval = PTR_ERR(pid);            goto bad_fork_cleanup_io;        }    }    p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;    /*     * Clear TID on mm_release()?     */    p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;#ifdef CONFIG_BLOCK    p->plug = NULL;#endif#ifdef CONFIG_FUTEX    p->robust_list = NULL;#ifdef CONFIG_COMPAT    p->compat_robust_list = NULL;#endif    INIT_LIST_HEAD(&p->pi_state_list);    p->pi_state_cache = NULL;#endif    /*     * sigaltstack should be cleared when sharing the same VM     */    if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)        p->sas_ss_sp = p->sas_ss_size = 0;    /*     * Syscall tracing and stepping should be turned off in the     * child regardless of CLONE_PTRACE.     */    user_disable_single_step(p);    clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);#ifdef TIF_SYSCALL_EMU    clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);#endif    clear_all_latency_tracing(p);    /* ok, now we should be set up.. */    p->pid = pid_nr(pid);    if (clone_flags & CLONE_THREAD) {        p->exit_signal = -1;        p->group_leader = current->group_leader;        p->tgid = current->tgid;    } else {        if (clone_flags & CLONE_PARENT)            p->exit_signal = current->group_leader->exit_signal;        else            p->exit_signal = (clone_flags & CSIGNAL);        p->group_leader = p;        p->tgid = p->pid;    }    p->nr_dirtied = 0;    p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);    p->dirty_paused_when = 0;    p->pdeath_signal = 0;    INIT_LIST_HEAD(&p->thread_group);    p->task_works = NULL;    //后续 TODO    /*     * Ensure that the cgroup subsystem policies allow the new process to be     * forked. It should be noted the the new process's css_set can be changed     * between here and cgroup_post_fork() if an organisation operation is in     * progress.     */    retval = cgroup_can_fork(p);    if (retval)        goto bad_fork_free_pid;    /*     * Make it visible to the rest of the system, but dont wake it up yet.     * Need tasklist lock for parent etc handling!     */    write_lock_irq(&tasklist_lock);    /* CLONE_PARENT re-uses the old parent */    if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {        p->real_parent = current->real_parent;        p->parent_exec_id = current->parent_exec_id;    } else {        p->real_parent = current;        p->parent_exec_id = current->self_exec_id;    }    spin_lock(&current->sighand->siglock);    /*     * Copy seccomp details explicitly here, in case they were changed     * before holding sighand lock.     */    copy_seccomp(p);    /*     * Process group and session signals need to be delivered to just the     * parent before the fork or both the parent and the child after the     * fork. Restart if a signal comes in before we add the new process to     * it's process group.     * A fatal signal pending means that current will exit, so the new     * thread can't slip out of an OOM kill (or normal SIGKILL).    */    recalc_sigpending();    if (signal_pending(current)) {        spin_unlock(&current->sighand->siglock);        write_unlock_irq(&tasklist_lock);        retval = -ERESTARTNOINTR;        goto bad_fork_cancel_cgroup;    }    if (likely(p->pid)) {        ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);        init_task_pid(p, PIDTYPE_PID, pid);        if (thread_group_leader(p)) {            init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));            init_task_pid(p, PIDTYPE_SID, task_session(current));            if (is_child_reaper(pid)) {                ns_of_pid(pid)->child_reaper = p;                p->signal->flags |= SIGNAL_UNKILLABLE;            }            p->signal->leader_pid = pid;            p->signal->tty = tty_kref_get(current->signal->tty);            list_add_tail(&p->sibling, &p->real_parent->children);            list_add_tail_rcu(&p->tasks, &init_task.tasks);            attach_pid(p, PIDTYPE_PGID);            attach_pid(p, PIDTYPE_SID);            __this_cpu_inc(process_counts);        } else {            current->signal->nr_threads++;            atomic_inc(&current->signal->live);            atomic_inc(&current->signal->sigcnt);            list_add_tail_rcu(&p->thread_group,                      &p->group_leader->thread_group);            list_add_tail_rcu(&p->thread_node,                      &p->signal->thread_head);        }        attach_pid(p, PIDTYPE_PID);        nr_threads++;    }    total_forks++;    spin_unlock(&current->sighand->siglock);    syscall_tracepoint_update(p);    write_unlock_irq(&tasklist_lock);    proc_fork_connector(p);    cgroup_post_fork(p);    threadgroup_change_end(current);    perf_event_fork(p);    trace_task_newtask(p, clone_flags);    uprobe_copy_process(p, clone_flags);    return p;bad_fork_cancel_cgroup:    cgroup_cancel_fork(p);bad_fork_free_pid:    if (pid != &init_struct_pid)        free_pid(pid);bad_fork_cleanup_io:    if (p->io_context)        exit_io_context(p);bad_fork_cleanup_namespaces:    exit_task_namespaces(p);bad_fork_cleanup_mm:    if (p->mm)        mmput(p->mm);bad_fork_cleanup_signal:    if (!(clone_flags & CLONE_THREAD))        free_signal_struct(p->signal);bad_fork_cleanup_sighand:    __cleanup_sighand(p->sighand);bad_fork_cleanup_fs:    exit_fs(p); /* blocking */bad_fork_cleanup_files:    exit_files(p); /* blocking */bad_fork_cleanup_semundo:    exit_sem(p);bad_fork_cleanup_audit:    audit_free(p);bad_fork_cleanup_perf:    perf_event_free_task(p);bad_fork_cleanup_policy:#ifdef CONFIG_NUMA    mpol_put(p->mempolicy);bad_fork_cleanup_threadgroup_lock:#endif    threadgroup_change_end(current);    delayacct_tsk_free(p);bad_fork_cleanup_count:    atomic_dec(&p->cred->user->processes);    exit_creds(p);bad_fork_free:    free_task(p);fork_out:    return ERR_PTR(retval);}

dup_task_struct 分析

http://code.woboq.org/linux/linux/kernel/fork.c.html#dup_task_structstatic struct task_struct *dup_task_struct(struct task_struct *orig){    struct task_struct *tsk;    struct thread_info *ti;    //对于非 NUMA 架构, 返回 -1    int node = tsk_fork_get_node(orig);    int err;    //为新进程分配内核空间:    //  kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);    //  slab_alloc_node(s, gfpflags, node, _RET_IP_);    //    tsk = alloc_task_struct_node(node);    if (!tsk)        return NULL;    //为新进程分配线程页信息:    //  struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP, THREAD_SIZE_ORDER);    //  return page ? page_address(page) : NULL;    ti = alloc_thread_info_node(tsk, node);    if (!ti)        goto free_tsk;    //将 tsk 指向 org 的内存地址    //  *tsk = *org    err = arch_dup_task_struct(tsk, orig);    if (err)        goto free_ti;    //注意这里 tsk 的 stack 是自己重新分配的, 而不是共享.    tsk->stack = ti;#ifdef CONFIG_SECCOMP    /*     * We must handle setting up seccomp filters once we're under     * the sighand lock in case orig has changed between now and     * then. Until then, filter must be NULL to avoid messing up     * the usage counts on the error path calling free_task.     */    tsk->seccomp.filter = NULL;#endif    //初始化 task 的栈为 origin 的栈    //  tsk->stack = orig->stack    //  tsk->stack->task = tsk    setup_thread_stack(tsk, orig);    //置零 tsk->stack->flags 中的 TIF_USER_RETURN_NOTIFY 标志    clear_user_return_notifier(tsk);    //置零 tsk->stack->flags 中的 TIF_NEED_RESCHED 标志    clear_tsk_need_resched(tsk);    //溢出检查    //将 tsk->stack 最后一个自己设置为 STACK_END_MAGIC, 标记 stack 结束    set_task_stack_end_magic(tsk);#ifdef CONFIG_CC_STACKPROTECTOR    tsk->stack_canary = get_random_int();#endif    /*     * One for us, one for whoever does the "release_task()" (usually     * parent)     */    atomic_set(&tsk->usage, 2);#ifdef CONFIG_BLK_DEV_IO_TRACE    tsk->btrace_seq = 0;#endif    //设置 task_struct 一些属性    tsk->splice_pipe = NULL;    tsk->task_frag.page = NULL;    tsk->wake_q.next = NULL;    account_kernel_stack(ti, 1);    return tsk;free_ti:    free_thread_info(ti);free_tsk:    free_task_struct(tsk);    return NULL;}

wake_up_new_task

/* * wake_up_new_task - wake up a newly created task for the first time. * * This function will do some initial scheduler statistics housekeeping * that must be done for every newly created context, then puts the task * on the runqueue and wakes it. */void wake_up_new_task(struct task_struct *p){    unsigned long flags;    struct rq *rq;    raw_spin_lock_irqsave(&p->pi_lock, flags);    /* Initialize new task's runnable average */    init_entity_runnable_average(&p->se);#ifdef CONFIG_SMP    /*     * Fork balancing, do it here and not earlier because:     *  - cpus_allowed can change in the fork path     *  - any previously selected cpu might disappear through hotplug     */    set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));#endif    rq = __task_rq_lock(p);    activate_task(rq, p, 0);    p->on_rq = TASK_ON_RQ_QUEUED;    trace_sched_wakeup_new(p);    check_preempt_curr(rq, p, WF_FORK);#ifdef CONFIG_SMP    if (p->sched_class->task_woken) {        /*         * Nothing relies on rq->lock after this, so its fine to         * drop it.         */        lockdep_unpin_lock(&rq->lock);        p->sched_class->task_woken(rq, p);        lockdep_pin_lock(&rq->lock);    }#endif    task_rq_unlock(rq, p, &flags);}

附录

task_struct 中会保留父进程信息的数据成员. 未完待续

struct task_struct {    volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */    void *stack;    atomic_t usage;    unsigned int flags; /* per process flags, defined below */    unsigned int ptrace;#ifdef CONFIG_SMP    struct llist_node wake_entry;    int on_cpu;    unsigned int wakee_flips;    unsigned long wakee_flip_decay_ts;    struct task_struct *last_wakee;    int wake_cpu;#endif    //prio 父进程的 normal_prio    int prio, static_prio, normal_prio;    unsigned int rt_priority;    const struct sched_class *sched_class;    //重要结构, 非克隆    struct sched_rt_entity rt;#ifdef CONFIG_CGROUP_SCHED    struct task_group *sched_task_group;#endif    //重要结构, 非克隆    struct sched_dl_entity dl;#ifdef CONFIG_BLK_DEV_IO_TRACE    unsigned int btrace_seq;#endif    unsigned int policy;    int nr_cpus_allowed;    cpumask_t cpus_allowed;#ifdef CONFIG_TASKS_RCU    unsigned long rcu_tasks_nvcsw;#endif /* #ifdef CONFIG_TASKS_RCU */#ifdef CONFIG_SCHED_INFO    struct sched_info sched_info;#endif    struct list_head tasks;#ifdef CONFIG_SMP    struct plist_node pushable_tasks;    struct rb_node pushable_dl_tasks;#endif    struct mm_struct *mm, *active_mm;    /* per-thread vma caching */    u32 vmacache_seqnum;    struct vm_area_struct *vmacache[VMACACHE_SIZE];/* task state */    int exit_state;    int exit_code, exit_signal;    unsigned long jobctl;   /* JOBCTL_*, siglock protected */    /* Used for emulating ABI behavior of previous Linux versions */    unsigned int personality;    /* scheduler bits, serialized by scheduler locks */    unsigned sched_reset_on_fork:1;    unsigned sched_contributes_to_load:1;    unsigned sched_migrated:1;    unsigned :0; /* force alignment to the next boundary */    /* unserialized, strictly 'current' */    unsigned in_execve:1; /* bit to tell LSMs we're in execve */    unsigned in_iowait:1;#ifdef CONFIG_MEMCG    unsigned memcg_may_oom:1;#ifndef CONFIG_SLOB    unsigned memcg_kmem_skip_account:1;#endif#endif#ifdef CONFIG_COMPAT_BRK    unsigned brk_randomized:1;#endif    unsigned long atomic_flags; /* Flags needing atomic access. */    struct restart_block restart_block;    pid_t pid;    pid_t tgid;#ifdef CONFIG_CC_STACKPROTECTOR    /* Canary value for the -fstack-protector gcc feature */    unsigned long stack_canary;#endif    /*     * pointers to (original) parent process, youngest child, younger sibling,     * older sibling, respectively.  (p->father can be replaced with     * p->real_parent->pid)     */    struct task_struct __rcu *real_parent; /* real parent process */    struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */    struct task_struct *group_leader;   /* threadgroup leader */    /*     * ptraced is the list of tasks this task is using ptrace on.     * This includes both natural children and PTRACE_ATTACH targets.     * p->ptrace_entry is p's link on the p->parent->ptraced list.     */    struct list_head ptraced;    struct list_head ptrace_entry;    /* PID/PID hash table linkage. */    struct pid_link pids[PIDTYPE_MAX];    struct list_head thread_node;    unsigned long nvcsw, nivcsw; /* context switch counts *//* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */    unsigned long min_flt, maj_flt;/* process credentials */    const struct cred __rcu *real_cred; /* objective and real subjective task                     * credentials (COW) */    char comm[TASK_COMM_LEN]; /* executable name excluding path                     - access with [gs]et_task_comm (which lock                       it with task_lock())                     - initialized normally by setup_new_exec *//* file system info */    struct nameidata *nameidata;#ifdef CONFIG_SYSVIPC/* ipc stuff */    struct sysv_sem sysvsem;#endif#ifdef CONFIG_DETECT_HUNG_TASK/* hung task detection */    unsigned long last_switch_count;#endif/* filesystem information */    struct fs_struct *fs;       //拷贝父进程/* open file information */    struct files_struct *files; //拷贝父进程/* signal handlers */    //仅拷贝父进程的 signal->rlim, oom_score_adj, oom_score_adj_min, has_child_subreaper  而不是内存.    struct signal_struct *signal;    struct sighand_struct *sighand; //仅拷贝父进程的 sighand->action, 而不是内存.    sigset_t blocked, real_blocked;    sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */    unsigned long sas_ss_sp;    size_t sas_ss_size;#ifdef CONFIG_AUDITSYSCALL    kuid_t loginuid;    unsigned int sessionid;#endif    struct seccomp seccomp;/* Thread group tracking */    u32 parent_exec_id;    u32 self_exec_id;/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, * mempolicy */    struct wake_q_node wake_q;#ifdef CONFIG_LOCKDEP# define MAX_LOCK_DEPTH 48UL    struct held_lock held_locks[MAX_LOCK_DEPTH];    gfp_t lockdep_reclaim_gfp;#endif#ifdef CONFIG_UBSAN    unsigned int in_ubsan;#endif/* journalling filesystem info */    void *journal_info;/* stacked block device info */    struct bio_list *bio_list;/* VM state */    struct reclaim_state *reclaim_state;    struct backing_dev_info *backing_dev_info;    unsigned long ptrace_message;    siginfo_t *last_siginfo; /* For ptrace use.  */#ifdef CONFIG_CPUSETS    nodemask_t mems_allowed;    /* Protected by alloc_lock */#endif#endif#ifdef CONFIG_DEBUG_PREEMPT    unsigned long preempt_disable_ip;#endif#ifdef CONFIG_NUMA    short il_next;    short pref_node_fork;#endif#ifdef CONFIG_NUMA_BALANCING    int numa_scan_seq;    unsigned int numa_scan_period_max;    unsigned long numa_migrate_retry;    struct list_head numa_entry;    /*     * numa_faults is an array split into four regions:     * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer     * in this precise order.     *     * faults_memory: Exponential decaying average of faults on a per-node     * basis. Scheduling placement decisions are made based on these     * counts. The values remain static for the duration of a PTE scan.     * faults_cpu: Track the nodes the process was running on when a NUMA     * hinting fault was incurred.     * faults_memory_buffer and faults_cpu_buffer: Record faults per node     * during the current scan window. When the scan completes, the counts     * in faults_memory and faults_cpu decay and these values are copied.     */    unsigned long total_numa_faults;    /*     * numa_faults_locality tracks if faults recorded during the last     * scan window were remote/local or failed to migrate. The task scan     * period is adapted based on the locality of the faults with different     * weights depending on whether they were shared or private faults     */    unsigned long numa_faults_locality[3];    unsigned long numa_pages_migrated;#endif /* CONFIG_NUMA_BALANCING */#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH    struct tlbflush_unmap_batch tlb_ubc;#endif    struct rcu_head rcu;    /*     * cache last used pipe for splice     */    struct pipe_inode_info *splice_pipe;    struct page_frag task_frag;#ifdef CONFIG_FAULT_INJECTION    int make_it_fail;#endif#ifdef CONFIG_LATENCYTOP    int latency_record_count;    struct latency_record latency_record[LT_SAVECOUNT];#endif    /*     * time slack values; these are used to round up poll() and     * select() etc timeout values. These are in nanoseconds.     */    unsigned long timer_slack_ns;    unsigned long default_timer_slack_ns; //父进程的 timer_slack_ns#ifdef CONFIG_KASAN    unsigned int kasan_depth;#endif#ifdef CONFIG_FUNCTION_GRAPH_TRACER    /* Index of current stored address in ret_stack */    int curr_ret_stack;    /* Stack of return addresses for return function tracing */    struct ftrace_ret_stack *ret_stack;    /* time stamp for last schedule */    unsigned long long ftrace_timestamp;    /*     * Number of functions that haven't been traced     * because of depth overrun.     */    atomic_t trace_overrun;    /* Pause for the tracing */    atomic_t tracing_graph_pause;#endif#ifdef CONFIG_TRACING    /* state flags for use by tracers */    unsigned long trace;    /* bitmask and counter of trace recursion */    unsigned long trace_recursion;#endif /* CONFIG_TRACING */#ifdef CONFIG_MEMCG    struct mem_cgroup *memcg_in_oom;    gfp_t memcg_oom_gfp_mask;    int memcg_oom_order;    /* number of pages to reclaim on returning to userland */    unsigned int memcg_nr_pages_over_high;#endif#ifdef CONFIG_UPROBES    struct uprobe_task *utask;#endif#ifdef CONFIG_DEBUG_ATOMIC_SLEEP    unsigned long   task_state_change;#endif/* CPU-specific state of this task */    struct thread_struct thread;  //克隆父进程/* * WARNING: on x86, 'thread_struct' contains a variable-sized * structure.  It *MUST* be at the end of 'task_struct'. * * Do not put anything below here! */};
0 0