java实现AVL树(一种自平衡二叉树)数据结构

来源:互联网 发布:淘宝上的众筹是真的吗 编辑:程序博客网 时间:2024/06/07 13:38
/****************************************************************************** *  Compilation:  javac AVLTreeST.java *  Execution:    java AVLTreeST < input.txt *  Dependencies: StdIn.java StdOut.java   *  Data files:   http://algs4.cs.princeton.edu/33balanced/tinyST.txt   *     *  A symbol table implemented using an AVL tree. * *  % more tinyST.txt *  S E A R C H E X A M P L E *   *  % java AVLTreeST < tinyST.txt *  A 8 *  C 4 *  E 12 *  H 5 *  L 11 *  M 9 *  P 10 *  R 3 *  S 0 *  X 7 * ******************************************************************************/package edu.princeton.cs.algs4;import java.util.NoSuchElementException;/** *  The <code>AVLTreeST</code> class represents an ordered symbol table of *  generic key-value pairs. It supports the usual <em>put</em>, <em>get</em>, *  <em>contains</em>, <em>delete</em>, <em>size</em>, and <em>is-empty</em> *  methods. It also provides ordered methods for finding the <em>minimum</em>, *  <em>maximum</em>, <em>floor</em>, and <em>ceiling</em>. It also provides a *  <em>keys</em> method for iterating over all of the keys. A symbol table *  implements the <em>associative array</em> abstraction: when associating a *  value with a key that is already in the symbol table, the convention is to *  replace the old value with the new value. Unlike {@link java.util.Map}, this *  class uses the convention that values cannot be <code>null</code> *  —setting the value associated with a key to <code>null</code> is *  equivalent to deleting the key from the symbol table. *  <p> *  This symbol table implementation uses internally an *  <a href="https://en.wikipedia.org/wiki/AVL_tree"> AVL tree </a> (Georgy *  Adelson-Velsky and Evgenii Landis' tree) which is a self-balancing BST. *  In an AVL tree, the heights of the two child subtrees of any *  node differ by at most one; if at any time they differ by more than one, *  rebalancing is done to restore this property. *  <p> *  This implementation requires that the key type implements the *  <code>Comparable</code> interface and calls the <code>compareTo()</code> and *  method to compare two keys. It does not call either <code>equals()</code> or *  <code>hashCode()</code>. The <em>put</em>, <em>get</em>, <em>contains</em>, *  <em>delete</em>, <em>minimum</em>, <em>maximum</em>, <em>ceiling</em>, and *  <em>floor</em> operations each take logarithmic time in the worst case. The *  <em>size</em>, and <em>is-empty</em> operations take constant time. *  Construction also takes constant time. *  *  For other implementations of the same API, see {@link ST}, {@link BinarySearchST}, *  {@link SequentialSearchST}, {@link BST}, {@link RedBlackBST}, *  {@link SeparateChainingHashST}, and {@link LinearProbingHashST}. *  *  @author Marcelo Silva */public class AVLTreeST<Key extends Comparable<Key>, Value> {    /**     * The root node.     */    private Node root;    /**     * This class represents an inner node of the AVL tree.     */    private class Node {        private Key key;    // the key        private Value val;  // the associated value        private int h;      // height of the subtree        private int N;      // number of nodes in subtree        private Node left;  // left subtree        private Node right; // right subtree        public Node(Key key, Value val, int h, int N) {            this.key = key;            this.val = val;            this.N = N;            this.h = h;        }    }    /**     * Initializes an empty symbol table.     */    public AVLTreeST() {    }    /**     * Checks if the symbol table is empty.     *      * @return <code>true</code> if the symbol table is empty.     */    public boolean isEmpty() {        return root == null;    }    /**     * Returns the number key-value pairs in the symbol table.     *      * @return the number key-value pairs in the symbol table     */    public int size() {        return size(root);    }    /**     * Returns the number of nodes in the subtree.     *      * @param x the subtree     *      * @return the number of nodes in the subtree     */    private int size(Node x) {        if (x == null) return 0;        return x.N;    }    /**     * Returns the height of the internal AVL tree. It is assumed that the     * height of an empty tree is -1 and the height of a tree with just one node     * is 0.     *      * @return the height of the internal AVL tree     */    public int height() {        return height(root);    }    /**     * Returns the height of the subtree.     *      * @param x the subtree     *      * @return the height of the subtree.     */    private int height(Node x) {        if (x == null) return -1;        return x.h;    }    /**     * Returns the value associated with the given key.     *      * @param key the key     * @return the value associated with the given key if the key is in the     *         symbol table and <code>null</code> if the key is not in the     *         symbol table     * @throws NullPointerException if <code>key</code> is <code>null</code>     */    public Value get(Key key) {        if (key == null) throw new NullPointerException("argument to get() is null");        Node x = get(root, key);        if (x == null) return null;        return x.val;    }    /**     * Returns value associated with the given key in the subtree or     * <code>null</code> if no such key.     *      * @param x the subtree     * @param key the key     * @return value associated with the given key in the subtree or     *         <code>null</code> if no such key     */    private Node get(Node x, Key key) {        if (x == null) return null;        int cmp = key.compareTo(x.key);        if (cmp < 0) return get(x.left, key);        else if (cmp > 0) return get(x.right, key);        else return x;    }    /**     * Checks if the symbol table contains the given key.     *      * @param key the key     * @return <code>true</code> if the symbol table contains <code>key</code>     *         and <code>false</code> otherwise     * @throws NullPointerException if <code>key</code> is <code>null</code>     */    public boolean contains(Key key) {        return get(key) != null;    }    /**     * Inserts the specified key-value pair into the symbol table, overwriting     * the old value with the new value if the symbol table already contains the     * specified key. Deletes the specified key (and its associated value) from     * this symbol table if the specified value is <code>null</code>.     *      * @param key the key     * @param val the value     * @throws NullPointerException if <code>key</code> is <code>null</code>     */    public void put(Key key, Value val) {        if (key == null) throw new NullPointerException("first argument to put() is null");        if (val == null) {            delete(key);            return;        }        root = put(root, key, val);        // assert check();    }    /**     * Inserts the key-value pair in the subtree. It overrides the old value     * with the new value if the symbol table already contains the specified key     * and deletes the specified key (and its associated value) from this symbol     * table if the specified value is <code>null</code>.     *      * @param x the subtree     * @param key the key     * @param val the value     * @return the subtree     */    private Node put(Node x, Key key, Value val) {        if (x == null) return new Node(key, val, 0, 1);        int cmp = key.compareTo(x.key);        if (cmp < 0) {            x.left = put(x.left, key, val);        }        else if (cmp > 0) {            x.right = put(x.right, key, val);        }        else {            x.val = val;            return x;        }        x.N = 1 + size(x.left) + size(x.right);        x.h = 1 + Math.max(height(x.left), height(x.right));        return balance(x);    }    /**     * Restores the AVL tree property of the subtree.     *      * @param x the subtree     * @return the subtree with restored AVL property     */    private Node balance(Node x) {        if (balanceFactor(x) < -1) {            if (balanceFactor(x.right) > 0) {                x.right = rotateRight(x.right);            }            x = rotateLeft(x);        }        else if (balanceFactor(x) > 1) {            if (balanceFactor(x.left) < 0) {                x.left = rotateLeft(x.left);            }            x = rotateRight(x);        }        return x;    }    /**     * Returns the balance factor of the subtree. The balance factor is defined     * as the difference in height of the left subtree and right subtree, in     * this order. Therefore, a subtree with a balance factor of -1, 0 or 1 has     * the AVL property since the heights of the two child subtrees differ by at     * most one.     *      * @param x the subtree     * @return the balance factor of the subtree     */    private int balanceFactor(Node x) {        return height(x.left) - height(x.right);    }    /**     * Rotates the given subtree to the right.     *      * @param x the subtree     * @return the right rotated subtree     */    private Node rotateRight(Node x) {        Node y = x.left;        x.left = y.right;        y.right = x;        y.N = x.N;        x.N = 1 + size(x.left) + size(x.right);        x.h = 1 + Math.max(height(x.left), height(x.right));        y.h = 1 + Math.max(height(y.left), height(y.right));        return y;    }    /**     * Rotates the given subtree to the left.     *      * @param x the subtree     * @return the left rotated subtree     */    private Node rotateLeft(Node x) {        Node y = x.right;        x.right = y.left;        y.left = x;        y.N = x.N;        x.N = 1 + size(x.left) + size(x.right);        x.h = 1 + Math.max(height(x.left), height(x.right));        y.h = 1 + Math.max(height(y.left), height(y.right));        return y;    }    /**     * Removes the specified key and its associated value from the symbol table     * (if the key is in the symbol table).     *      * @param key the key     * @throws NullPointerException if <code>key</code> is <code>null</code>     */    public void delete(Key key) {        if (key == null) throw new NullPointerException("argument to delete() is null");        if (!contains(key)) return;        root = delete(root, key);        // assert check();    }    /**     * Removes the specified key and its associated value from the given     * subtree.     *      * @param x the subtree     * @param key the key     * @return the updated subtree     */    private Node delete(Node x, Key key) {        int cmp = key.compareTo(x.key);        if (cmp < 0) {            x.left = delete(x.left, key);        }        else if (cmp > 0) {            x.right = delete(x.right, key);        }        else {            if (x.left == null) {                return x.right;            }            else if (x.right == null) {                return x.left;            }            else {                Node y = x;                x = min(y.right);                x.right = deleteMin(y.right);                x.left = y.left;            }        }        x.N = 1 + size(x.left) + size(x.right);        x.h = 1 + Math.max(height(x.left), height(x.right));        return balance(x);    }    /**     * Removes the smallest key and associated value from the symbol table.     *      * @throws NoSuchElementException if the symbol table is empty     */    public void deleteMin() {        if (isEmpty()) throw new NoSuchElementException("called deleteMin() with empty symbol table");        root = deleteMin(root);    }    /**     * Removes the smallest key and associated value from the given subtree.     *      * @param x the subtree     * @return the updated subtree     */    private Node deleteMin(Node x) {        if (x.left == null) return x.right;        x.left = deleteMin(x.left);        x.N = 1 + size(x.left) + size(x.right);        x.h = 1 + Math.max(height(x.left), height(x.right));        return balance(x);    }    /**     * Removes the largest key and associated value from the symbol table.     *      * @throws NoSuchElementException if the symbol table is empty     */    public void deleteMax() {        if (isEmpty()) throw new NoSuchElementException("called deleteMax() with empty symbol table");        root = deleteMax(root);    }    /**     * Removes the largest key and associated value from the given subtree.     *      * @param x the subtree     * @return the updated subtree     */    private Node deleteMax(Node x) {        if (x.right == null) return x.left;        x.right = deleteMax(x.right);        x.N = 1 + size(x.left) + size(x.right);        x.h = 1 + Math.max(height(x.left), height(x.right));        return balance(x);    }    /**     * Returns the smallest key in the symbol table.     *      * @return the smallest key in the symbol table     * @throws NoSuchElementException if the symbol table is empty     */    public Key min() {        if (isEmpty()) throw new NoSuchElementException("called min() with empty symbol table");        return min(root).key;    }    /**     * Returns the node with the smallest key in the subtree.     *      * @param x the subtree     * @return the node with the smallest key in the subtree     */    private Node min(Node x) {        if (x.left == null) return x;        return min(x.left);    }    /**     * Returns the largest key in the symbol table.     *      * @return the largest key in the symbol table     * @throws NoSuchElementException if the symbol table is empty     */    public Key max() {        if (isEmpty()) throw new NoSuchElementException("called max() with empty symbol table");        return max(root).key;    }    /**     * Returns the node with the largest key in the subtree.     *      * @param x the subtree     * @return the node with the largest key in the subtree     */    private Node max(Node x) {        if (x.right == null) return x;        return max(x.right);    }    /**     * Returns the largest key in the symbol table less than or equal to     * <code>key</code>.     *      * @param key the key     * @return the largest key in the symbol table less than or equal to     *         <code>key</code>     * @throws NoSuchElementException if the symbol table is empty     * @throws NullPointerException if <code>key</code> is <code>null</code>     */    public Key floor(Key key) {        if (key == null) throw new NullPointerException("argument to floor() is null");        if (isEmpty()) throw new NoSuchElementException("called floor() with empty symbol table");        Node x = floor(root, key);        if (x == null) return null;        else return x.key;    }    /**     * Returns the node in the subtree with the largest key less than or equal     * to the given key.     *      * @param x the subtree     * @param key the key     * @return the node in the subtree with the largest key less than or equal     *         to the given key     */    private Node floor(Node x, Key key) {        if (x == null) return null;        int cmp = key.compareTo(x.key);        if (cmp == 0) return x;        if (cmp < 0) return floor(x.left, key);        Node y = floor(x.right, key);        if (y != null) return y;        else return x;    }    /**     * Returns the smallest key in the symbol table greater than or equal to     * <code>key</code>.     *      * @param key the key     * @return the smallest key in the symbol table greater than or equal to     *         <code>key</code>     * @throws NoSuchElementException if the symbol table is empty     * @throws NullPointerException if <code>key</code> is <code>null</code>     */    public Key ceiling(Key key) {        if (key == null) throw new NullPointerException("argument to ceiling() is null");        if (isEmpty()) throw new NoSuchElementException("called ceiling() with empty symbol table");        Node x = ceiling(root, key);        if (x == null) return null;        else return x.key;    }    /**     * Returns the node in the subtree with the smallest key greater than or     * equal to the given key.     *      * @param x the subtree     * @param key the key     * @return the node in the subtree with the smallest key greater than or     *         equal to the given key     */    private Node ceiling(Node x, Key key) {        if (x == null) return null;        int cmp = key.compareTo(x.key);        if (cmp == 0) return x;        if (cmp > 0) return ceiling(x.right, key);        Node y = ceiling(x.left, key);        if (y != null) return y;        else return x;    }    /**     * Returns the kth smallest key in the symbol table.     *      * @param k the order statistic     * @return the kth smallest key in the symbol table     * @throws IllegalArgumentException unless <code>k</code> is between 0 and     *             <code> size() -1 </code>     */    public Key select(int k) {        if (k < 0 || k >= size()) throw new IllegalArgumentException("k is not in range 0-" + (size() - 1));        Node x = select(root, k);        return x.key;    }    /**     * Returns the node with key the kth smallest key in the subtree.     *      * @param x the subtree     * @param k the kth smallest key in the subtree     * @return the node with key the kth smallest key in the subtree     */    private Node select(Node x, int k) {        if (x == null) return null;        int t = size(x.left);        if (t > k) return select(x.left, k);        else if (t < k) return select(x.right, k - t - 1);        else return x;    }    /**     * Returns the number of keys in the symbol table strictly less than     * <code>key</code>.     *      * @param key the key     * @return the number of keys in the symbol table strictly less than     *         <code>key</code>     * @throws NullPointerException if <code>key</code> is <code>null</code>     */    public int rank(Key key) {        if (key == null) throw new NullPointerException("argument to rank() is null");        return rank(key, root);    }    /**     * Returns the number of keys in the subtree less than key.     *      * @param key the key     * @param x the subtree     * @return the number of keys in the subtree less than key     */    private int rank(Key key, Node x) {        if (x == null) return 0;        int cmp = key.compareTo(x.key);        if (cmp < 0) return rank(key, x.left);        else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);        else return size(x.left);    }    /**     * Returns all keys in the symbol table.     *      * @return all keys in the symbol table     */    public Iterable<Key> keys() {        return keysInOrder();    }    /**     * Returns all keys in the symbol table following an in-order traversal.     *      * @return all keys in the symbol table following an in-order traversal     */    public Iterable<Key> keysInOrder() {        Queue<Key> queue = new Queue<Key>();        keysInOrder(root, queue);        return queue;    }    /**     * Adds the keys in the subtree to queue following an in-order traversal.     *      * @param x the subtree     * @param queue the queue     */    private void keysInOrder(Node x, Queue<Key> queue) {        if (x == null) return;        keysInOrder(x.left, queue);        queue.enqueue(x.key);        keysInOrder(x.right, queue);    }    /**     * Returns all keys in the symbol table following a level-order traversal.     *      * @return all keys in the symbol table following a level-order traversal.     */    public Iterable<Key> keysLevelOrder() {        Queue<Key> queue = new Queue<Key>();        if (!isEmpty()) {            Queue<Node> queue2 = new Queue<Node>();            queue2.enqueue(root);            while (!queue2.isEmpty()) {                Node x = queue2.dequeue();                queue.enqueue(x.key);                if (x.left != null) {                    queue2.enqueue(x.left);                }                if (x.right != null) {                    queue2.enqueue(x.right);                }            }        }        return queue;    }    /**     * Returns all keys in the symbol table in the given range.     *      * @param lo the lowest key     * @param hi the highest key     * @return all keys in the symbol table between <code>lo</code> (inclusive)     *         and <code>hi</code> (exclusive)     * @throws NullPointerException if either <code>lo</code> or <code>hi</code>     *             is <code>null</code>     */    public Iterable<Key> keys(Key lo, Key hi) {        if (lo == null) throw new NullPointerException("first argument to keys() is null");        if (hi == null) throw new NullPointerException("second argument to keys() is null");        Queue<Key> queue = new Queue<Key>();        keys(root, queue, lo, hi);        return queue;    }    /**     * Adds the keys between <code>lo</code> and <code>hi</code> in the subtree     * to the <code>queue</code>.     *      * @param x the subtree     * @param queue the queue     * @param lo the lowest key     * @param hi the highest key     */    private void keys(Node x, Queue<Key> queue, Key lo, Key hi) {        if (x == null) return;        int cmplo = lo.compareTo(x.key);        int cmphi = hi.compareTo(x.key);        if (cmplo < 0) keys(x.left, queue, lo, hi);        if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);        if (cmphi > 0) keys(x.right, queue, lo, hi);    }    /**     * Returns the number of keys in the symbol table in the given range.     *      * @return the number of keys in the symbol table between <code>lo</code>     *         (inclusive) and <code>hi</code> (exclusive)     * @throws NullPointerException if either <code>lo</code> or <code>hi</code>     *             is <code>null</code>     */    public int size(Key lo, Key hi) {        if (lo == null) throw new NullPointerException("first argument to size() is null");        if (hi == null) throw new NullPointerException("second argument to size() is null");        if (lo.compareTo(hi) > 0) return 0;        if (contains(hi)) return rank(hi) - rank(lo) + 1;        else return rank(hi) - rank(lo);    }    /**     * Checks if the AVL tree invariants are fine.     *      * @return <code>true</code> if the AVL tree invariants are fine     */    private boolean check() {        if (!isBST()) StdOut.println("Symmetric order not consistent");        if (!isAVL()) StdOut.println("AVL property not consistent");        if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");        if (!isRankConsistent()) StdOut.println("Ranks not consistent");        return isBST() && isAVL() && isSizeConsistent() && isRankConsistent();    }    /**     * Checks if AVL property is consistent.     *      * @return <code>true</code> if AVL property is consistent.     */    private boolean isAVL() {        return isAVL(root);    }    /**     * Checks if AVL property is consistent in the subtree.     *      * @param x the subtree     * @return <code>true</code> if AVL property is consistent in the subtree     */    private boolean isAVL(Node x) {        if (x == null) return true;        int bf = balanceFactor(x);        if (bf > 1 || bf < -1) return false;        return isAVL(x.left) && isAVL(x.right);    }    /**     * Checks if the symmetric order is consistent.     *      * @return <code>true</code> if the symmetric order is consistent     */    private boolean isBST() {        return isBST(root, null, null);    }    /**     * Checks if the tree rooted at x is a BST with all keys strictly between     * min and max (if min or max is null, treat as empty constraint) Credit:     * Bob Dondero's elegant solution     *      * @param x the subtree     * @param min the minimum key in subtree     * @param max the maximum key in subtree     * @return <code>true</code> if if the symmetric order is consistent     */    private boolean isBST(Node x, Key min, Key max) {        if (x == null) return true;        if (min != null && x.key.compareTo(min) <= 0) return false;        if (max != null && x.key.compareTo(max) >= 0) return false;        return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);    }    /**     * Checks if size is consistent.     *      * @return <code>true</code> if size is consistent     */    private boolean isSizeConsistent() {        return isSizeConsistent(root);    }    /**     * Checks if the size of the subtree is consistent.     *      * @return <code>true</code> if the size of the subtree is consistent     */    private boolean isSizeConsistent(Node x) {        if (x == null) return true;        if (x.N != size(x.left) + size(x.right) + 1) return false;        return isSizeConsistent(x.left) && isSizeConsistent(x.right);    }    /**     * Checks if rank is consistent.     *      * @return <code>true</code> if rank is consistent     */    private boolean isRankConsistent() {        for (int i = 0; i < size(); i++)            if (i != rank(select(i))) return false;        for (Key key : keys())            if (key.compareTo(select(rank(key))) != 0) return false;        return true;    }    /**     * Unit tests the <code>AVLTreeST</code> data type.     */    public static void main(String[] args) {        AVLTreeST<String, Integer> st = new AVLTreeST<String, Integer>();        for (int i = 0; !StdIn.isEmpty(); i++) {            String key = StdIn.readString();            st.put(key, i);        }        for (String s : st.keys())            StdOut.println(s + " " + st.get(s));        StdOut.println();    }}

0 0
原创粉丝点击