ZOJ 3469 food delivery 有趣的区间dp

来源:互联网 发布:java split第二个参数 编辑:程序博客网 时间:2024/05/19 13:43
P - 到区间dp为止
Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu
Submit Status Practice ZOJ 3469
Appoint description: 

Description

When we are focusing on solving problems, we usually prefer to stay in front of computers rather than go out for lunch. At this time, we may call for food delivery.

Suppose there are N people living in a straight street that is just lies on an X-coordinate axis. The ith person's coordinate is Xi meters. And in the street there is a take-out restaurant which has coordinates X meters. One day at lunchtime, each person takes an order from the restaurant at the same time. As a worker in the restaurant, you need to start from the restaurant, send food to the N people, and then come back to the restaurant. Your speed is V-1 meters per minute.

You know that the N people have different personal characters; therefore they have different feeling on the time their food arrives. Their feelings are measured by Displeasure Index. At the beginning, the Displeasure Index for each person is 0. When waiting for the food, the ith person will gain BiDispleasure Index per minute.

If one's Displeasure Index goes too high, he will not buy your food any more. So you need to keep the sum of all people's Displeasure Index as low as possible in order to maximize your income. Your task is to find the minimal sum of Displeasure Index.

Input

The input contains multiple test cases, separated with a blank line. Each case is started with three integers N ( 1 <= N <= 1000 ), V ( V > 0), X ( X >= 0 ), then N lines followed. Each line contains two integers Xi ( Xi >= 0 ), Bi ( Bi >= 0), which are described above.

You can safely assume that all numbers in the input and output will be less than 231 - 1.

Please process to the end-of-file.

Output

For each test case please output a single number, which is the minimal sum of Displeasure Index. One test case per line.

Sample Input

5 1 0
1 1
2 2
3 3
4 4
5 5

Sample Output

55

感觉这题和之前做的the last puzzle有点像 dp[i,j,k]三元组表示区间的最优解 0代表从i结束1表是在j结束

ACcode:

#include <cstdio>#include <cstring>#include <iostream>#include <algorithm>#define maxn 1111#define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;++i)#define INF 0x3f3f3f3f //int 最大值using namespace std;struct N{    int x,v;    void in(){scanf("%d%d",&x,&v);}    void out(){cout<<x<<" "<<v<<'\12';}    bool operator<(const N a)const{        return this->x<a.x;    }}my[maxn];int dp[maxn][maxn][2];int sum[maxn];int main(){    int n,v,x;    while(~scanf("%d%d%d",&n,&v,&x)){        FOR(i,1,n)my[i].in();        n++;        my[n].x=x;        my[n].v=0;        sort(my+1,my+1+n);        //FOR(i,1,n)my[i].out();        sum[0]=0;        int pos;        FOR(i,1,n)            sum[i]=sum[i-1]+my[i].v;        FOR(i,1,n)if(my[i].x==x){pos=i;break;}        //cout<<pos<<'\12';        for(int i=1;i<=n;++i)for(int j=1;j<=n;++j)dp[i][j][1]=dp[i][j][0]=INF;        dp[pos][pos][0]=dp[pos][pos][1]=0;        for(int i=pos;i>=1;--i)        for(int j=pos;j<=n;++j){             //   cout<<i<<" "<<j<<'\12';            if(i==j)continue;            int tmp=(sum[i]+sum[n]-sum[j]);            int tmp1=sum[i-1]+sum[n]-sum[j-1];            dp[i][j][0]=min(dp[i][j][0],min(dp[i+1][j][0]+tmp*(my[i+1].x-my[i].x),dp[i+1][j][1]+tmp*(my[j].x-my[i].x)));            dp[i][j][1]=min(dp[i][j][1],min(dp[i][j-1][1]+tmp1*(my[j].x-my[j-1].x),dp[i][j-1][0]+tmp1*(my[j].x-my[i].x)));        }        printf("%d\n",min(dp[1][n][0],dp[1][n][1])*v);    }    return 0;}


0 0
原创粉丝点击