2015ACM长春赛区网络赛 J题

来源:互联网 发布:手机 比价软件 编辑:程序博客网 时间:2024/05/17 07:07

Unknown Treasure

Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 2049    Accepted Submission(s): 752


Problem Description
On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician entered the cave because it is there. Somewhere deep in the cave, she found a treasure chest with a combination lock and some numbers on it. After quite a research, the mathematician found out that the correct combination to the lock would be obtained by calculating how many ways are there to pickm different apples among n of them and modulo it with M.M is the product of several different primes.
 

Input
On the first line there is an integer T(T20) representing the number of test cases.

Each test case starts with three integers n,m,k(1mn1018,1k10) on a line where k is the number of primes. Following on the next line are k different primes p1,...,pk. It is guaranteed that M=p1p2pk1018 and pi105 for every i{1,...,k}.
 

Output
For each test case output the correct combination on a line.
 

Sample Input
19 5 23 5
 

Sample Output
6


利用卢卡斯定理和中国剩余定理

#include <iostream>#include <cstdio>#include <cstring>#include <stack>#include <queue>#include <map>#include <set>#include <vector>#include <cmath>#include <algorithm>using namespace std;const double eps = 1e-6;const double pi = acos(-1.0);const int INF = 0x3f3f3f3f;const int MOD = 1000000007;#define ll long long#define CL(a) memset(a,0,sizeof(a))const int maxn = 1e5 + 5;ll fac[maxn] = { 0, 1 }, inv[maxn] = { 0, 1 };ll pow_mod(ll a, ll n, ll mod)//快速幂取模{ll ret = 1;while (n){if (n & 1)ret = ret*a%mod;a = a*a%mod;n >>= 1;}return ret;}ll Lucas(ll n, ll m, ll mod)//Lucas定理{ll ret = 1;ll mm = m, nn = n;while (mm && nn){ll mod_m = mm%mod, mod_n = nn%mod;if (mod_n >= mod_m)ret = ret*fac[mod_n] % mod*inv[mod_m] % mod*inv[mod_n - mod_m] % mod;else{ret = 0;break;}mm /= mod;nn /= mod;}return ret;}void exgcd(ll a, ll b, ll &d, ll &x, ll &y)//扩展欧几里德求逆元{if (b == 0)d = a, x = 1, y = 0;else{exgcd(b, a%b, d, y, x);y -= x * (a / b);}}ll china(ll n, ll m[], ll a[])//中国剩余定理求解{ll aa = a[0];ll mm = m[0];for (int i = 0; i<n; i++){ll sub = (a[i] - aa);ll d, x, y;exgcd(mm, m[i], d, x, y);if (sub % d) return -1;ll new_m = m[i] / d;new_m = (sub / d*x%new_m + new_m) % new_m;aa = mm*new_m + aa;mm = mm*m[i] / d;}aa = (aa + mm) % mm;return aa;}int main(){int cas;ll n, m, k, a[15], p[15];scanf("%d", &cas);while (cas--){scanf("%lld%lld%lld", &n, &m, &k);for (int i = 0; i<k; i++){scanf("%lld", &p[i]);//init(p[i]);for (int j = 2; j<p[i]; j++)fac[j] = fac[j - 1] * j%p[i];inv[p[i] - 1] = pow_mod(fac[p[i] - 1], p[i] - 2, p[i]);for (int j = p[i] - 1; j>0; j--)inv[j - 1] = inv[j] * j%p[i];a[i] = Lucas(n, m, p[i]);}printf("%lld\n", china(k, p, a));}return 0;}


0 0